Optimal. Leaf size=16 \[ \frac {x}{8-2 x+\log (2)+\log (3)}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 20, normalized size of antiderivative = 1.25, number of steps used = 4, number of rules used = 2, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6, 2074} \begin {gather*} \log (x)+\frac {8+\log (6)}{2 (-2 x+8+\log (6))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64-24 x+4 x^2+(16-3 x) \log (2)+\log ^2(2)+(16-3 x+2 \log (2)) \log (3)+\log ^2(3)}{-32 x^2+4 x^3+\left (16 x-4 x^2\right ) \log (2)+x \left (64+\log ^2(2)\right )+\left (16 x-4 x^2+2 x \log (2)\right ) \log (3)+x \log ^2(3)} \, dx\\ &=\int \frac {64-24 x+4 x^2+(16-3 x) \log (2)+\log ^2(2)+(16-3 x+2 \log (2)) \log (3)+\log ^2(3)}{-32 x^2+4 x^3+\left (16 x-4 x^2\right ) \log (2)+\left (16 x-4 x^2+2 x \log (2)\right ) \log (3)+x \left (64+\log ^2(2)+\log ^2(3)\right )} \, dx\\ &=\int \left (\frac {1}{x}+\frac {8+\log (6)}{(8-2 x+\log (6))^2}\right ) \, dx\\ &=\frac {8+\log (6)}{2 (8-2 x+\log (6))}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 86, normalized size = 5.38 \begin {gather*} \frac {-\frac {(8+\log (6)) \left (64+2 \log ^2(2)+2 \log ^2(3)+2 \log ^2(6)+\log (4) \log (9)-\log (6) \log (216)+\log (2821109907456)\right )}{-8+2 x-\log (6)}+2 \left (64+16 \log (2)+\log ^2(2)+\log ^2(3)+\log (3) (16+\log (4))\right ) \log (x)}{2 (8+\log (6))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 44, normalized size = 2.75 \begin {gather*} \frac {2 \, {\left (2 \, x - \log \relax (3) - \log \relax (2) - 8\right )} \log \relax (x) - \log \relax (3) - \log \relax (2) - 8}{2 \, {\left (2 \, x - \log \relax (3) - \log \relax (2) - 8\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 27, normalized size = 1.69 \begin {gather*} -\frac {\log \relax (3) + \log \relax (2) + 8}{2 \, {\left (2 \, x - \log \relax (3) - \log \relax (2) - 8\right )}} + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 26, normalized size = 1.62
method | result | size |
norman | \(\frac {\frac {\ln \relax (3)}{2}+\frac {\ln \relax (2)}{2}+4}{\ln \relax (3)+8-2 x +\ln \relax (2)}+\ln \relax (x )\) | \(26\) |
default | \(-\frac {\frac {\ln \relax (3)}{2}+\frac {\ln \relax (2)}{2}+4}{-\ln \relax (3)-8+2 x -\ln \relax (2)}+\ln \relax (x )\) | \(31\) |
risch | \(\frac {\ln \relax (3)}{2 \ln \relax (3)+16-4 x +2 \ln \relax (2)}+\frac {\ln \relax (2)}{2 \ln \relax (3)+16-4 x +2 \ln \relax (2)}+\frac {4}{\ln \relax (3)+8-2 x +\ln \relax (2)}+\ln \relax (x )\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 26, normalized size = 1.62 \begin {gather*} -\frac {\log \relax (3) + \log \relax (2) + 8}{2 \, {\left (2 \, x - \log \relax (3) - \log \relax (2) - 8\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.51, size = 114, normalized size = 7.12 \begin {gather*} \frac {\ln \relax (x)\,\left (16\,\ln \relax (6)+2\,\ln \relax (2)\,\ln \relax (3)+{\ln \relax (2)}^2+{\ln \relax (3)}^2+64\right )}{{\left (\ln \relax (6)+8\right )}^2}+\frac {16\,\ln \relax (6)+4\,\ln \relax (2)\,\ln \relax (3)+2\,{\ln \relax (2)}^2+2\,{\ln \relax (3)}^2-{\ln \relax (6)}^2+64}{2\,\left (\ln \relax (6)+8\right )\,\left (\ln \relax (6)-2\,x+8\right )}-\frac {\ln \left (x-\frac {\ln \relax (6)}{2}-4\right )\,\left (2\,\ln \relax (2)\,\ln \relax (3)+{\ln \relax (2)}^2+{\ln \relax (3)}^2-{\ln \relax (6)}^2\right )}{{\left (\ln \relax (6)+8\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.98, size = 27, normalized size = 1.69 \begin {gather*} \log {\relax (x )} + \frac {-8 - \log {\relax (3 )} - \log {\relax (2 )}}{4 x - 16 - 2 \log {\relax (3 )} - 2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________