Optimal. Leaf size=29 \[ \frac {8 x}{5 (2+x) \left (1-x+\frac {e^x}{\log (4)}-\log (4)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (16-16 x-8 x^2\right ) \log (4)+\left (16+8 x^2\right ) \log ^2(4)-16 \log ^3(4)}{e^{2 x} \left (20+20 x+5 x^2\right )+\left (20-20 x-15 x^2+10 x^3+5 x^4\right ) \log ^2(4)+\left (-40+30 x^2+10 x^3\right ) \log ^3(4)+\left (20+20 x+5 x^2\right ) \log ^4(4)+e^x \left (\left (40-30 x^2-10 x^3\right ) \log (4)+\left (-40-40 x-10 x^2\right ) \log ^2(4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \log (4) \left (-e^x \left (-2+2 x+x^2\right )+x^2 \log (4)-2 \log ^2(4) \left (1-\frac {\log (16)}{2 \log ^2(4)}\right )\right )}{5 (2+x)^2 \left (e^x-\log (4) (-1+x+\log (4))\right )^2} \, dx\\ &=\frac {1}{5} (8 \log (4)) \int \frac {-e^x \left (-2+2 x+x^2\right )+x^2 \log (4)-2 \log ^2(4) \left (1-\frac {\log (16)}{2 \log ^2(4)}\right )}{(2+x)^2 \left (e^x-\log (4) (-1+x+\log (4))\right )^2} \, dx\\ &=\frac {1}{5} (8 \log (4)) \int \left (\frac {2-2 x-x^2}{(2+x)^2 \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )}+\frac {x \left (-x^2 \log (4)-2 \log ^2(4)-x \log ^2(4)+\log (256)\right )}{(2+x)^2 \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2}\right ) \, dx\\ &=\frac {1}{5} (8 \log (4)) \int \frac {2-2 x-x^2}{(2+x)^2 \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )} \, dx+\frac {1}{5} (8 \log (4)) \int \frac {x \left (-x^2 \log (4)-2 \log ^2(4)-x \log ^2(4)+\log (256)\right )}{(2+x)^2 \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2} \, dx\\ &=\frac {1}{5} (8 \log (4)) \int \frac {x (-x \log (4)+(2-\log (4)) \log (4))}{(2+x) \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2} \, dx+\frac {1}{5} (8 \log (4)) \int \left (\frac {1}{-e^x+x \log (4)-(1-\log (4)) \log (4)}+\frac {2}{(2+x)^2 \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )}+\frac {2}{(2+x) \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )}\right ) \, dx\\ &=\frac {1}{5} (8 \log (4)) \int \frac {1}{-e^x+x \log (4)-(1-\log (4)) \log (4)} \, dx+\frac {1}{5} (8 \log (4)) \int \left (-\frac {x \log (4)}{\left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2}+\frac {(4-\log (4)) \log (4)}{\left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2}+\frac {2 (-4+\log (4)) \log (4)}{(2+x) \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2}\right ) \, dx+\frac {1}{5} (16 \log (4)) \int \frac {1}{(2+x)^2 \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )} \, dx+\frac {1}{5} (16 \log (4)) \int \frac {1}{(2+x) \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )} \, dx\\ &=\frac {1}{5} (8 \log (4)) \int \frac {1}{-e^x+\log (4) (-1+x+\log (4))} \, dx+\frac {1}{5} (16 \log (4)) \int \frac {1}{(2+x)^2 \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )} \, dx+\frac {1}{5} (16 \log (4)) \int \frac {1}{(2+x) \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )} \, dx-\frac {1}{5} \left (8 \log ^2(4)\right ) \int \frac {x}{\left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2} \, dx+\frac {1}{5} \left (8 (4-\log (4)) \log ^2(4)\right ) \int \frac {1}{\left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2} \, dx-\frac {1}{5} \left (16 (4-\log (4)) \log ^2(4)\right ) \int \frac {1}{(2+x) \left (e^x-x \log (4)+(1-\log (4)) \log (4)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 56, normalized size = 1.93 \begin {gather*} -\frac {8 x \left (x^2 \log (4)+2 \log ^2(4)+x \log ^2(4)-\log (256)\right )}{5 (2+x)^2 (-2+x+\log (4)) \left (-e^x+\log (4) (-1+x+\log (4))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 34, normalized size = 1.17 \begin {gather*} -\frac {16 \, x \log \relax (2)}{5 \, {\left (4 \, {\left (x + 2\right )} \log \relax (2)^{2} - {\left (x + 2\right )} e^{x} + 2 \, {\left (x^{2} + x - 2\right )} \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 46, normalized size = 1.59 \begin {gather*} -\frac {16 \, x \log \relax (2)}{5 \, {\left (2 \, x^{2} \log \relax (2) + 4 \, x \log \relax (2)^{2} - x e^{x} + 2 \, x \log \relax (2) + 8 \, \log \relax (2)^{2} - 2 \, e^{x} - 4 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 33, normalized size = 1.14
method | result | size |
norman | \(-\frac {16 x \ln \relax (2)}{5 \left (2+x \right ) \left (4 \ln \relax (2)^{2}+2 x \ln \relax (2)-2 \ln \relax (2)-{\mathrm e}^{x}\right )}\) | \(33\) |
risch | \(-\frac {16 x \ln \relax (2)}{5 \left (2+x \right ) \left (4 \ln \relax (2)^{2}+2 x \ln \relax (2)-2 \ln \relax (2)-{\mathrm e}^{x}\right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 44, normalized size = 1.52 \begin {gather*} -\frac {16 \, x \log \relax (2)}{5 \, {\left (2 \, x^{2} \log \relax (2) + 2 \, {\left (2 \, \log \relax (2)^{2} + \log \relax (2)\right )} x - {\left (x + 2\right )} e^{x} + 8 \, \log \relax (2)^{2} - 4 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {128\,{\ln \relax (2)}^3-4\,{\ln \relax (2)}^2\,\left (8\,x^2+16\right )+2\,{\mathrm {e}}^x\,\ln \relax (2)\,\left (8\,x^2+16\,x-16\right )}{4\,{\ln \relax (2)}^2\,\left (5\,x^4+10\,x^3-15\,x^2-20\,x+20\right )+{\mathrm {e}}^{2\,x}\,\left (5\,x^2+20\,x+20\right )+16\,{\ln \relax (2)}^4\,\left (5\,x^2+20\,x+20\right )-{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (10\,x^3+30\,x^2-40\right )+4\,{\ln \relax (2)}^2\,\left (10\,x^2+40\,x+40\right )\right )+8\,{\ln \relax (2)}^3\,\left (10\,x^3+30\,x^2-40\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 49, normalized size = 1.69 \begin {gather*} \frac {16 x \log {\relax (2 )}}{- 10 x^{2} \log {\relax (2 )} - 20 x \log {\relax (2 )}^{2} - 10 x \log {\relax (2 )} + \left (5 x + 10\right ) e^{x} - 40 \log {\relax (2 )}^{2} + 20 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________