Optimal. Leaf size=19 \[ \log \left (\left (e^{\frac {1}{e^3 \log (5)}}+\frac {x}{60}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 17, normalized size of antiderivative = 0.89, number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 31} \begin {gather*} 2 \log \left (x+60 e^{\frac {1}{e^3 \log (5)}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int \frac {1}{60 e^{\frac {1}{e^3 \log (5)}}+x} \, dx\\ &=2 \log \left (60 e^{\frac {1}{e^3 \log (5)}}+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.89 \begin {gather*} 2 \log \left (60 e^{\frac {1}{e^3 \log (5)}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 15, normalized size = 0.79 \begin {gather*} 2 \, \log \left (x + 60 \, e^{\left (\frac {e^{\left (-3\right )}}{\log \relax (5)}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 16, normalized size = 0.84 \begin {gather*} 2 \, \log \left ({\left | x + 60 \, e^{\left (\frac {e^{\left (-3\right )}}{\log \relax (5)}\right )} \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 16, normalized size = 0.84
method | result | size |
risch | \(2 \ln \left (60 \,{\mathrm e}^{\frac {{\mathrm e}^{-3}}{\ln \relax (5)}}+x \right )\) | \(16\) |
default | \(2 \ln \left (60 \,{\mathrm e}^{\frac {{\mathrm e}^{-3}}{\ln \relax (5)}}+x \right )\) | \(18\) |
norman | \(2 \ln \left (60 \,{\mathrm e}^{\frac {{\mathrm e}^{-3}}{\ln \relax (5)}}+x \right )\) | \(18\) |
meijerg | \(2 \ln \left (1+\frac {x \,{\mathrm e}^{-\frac {{\mathrm e}^{-3}}{\ln \relax (5)}}}{60}\right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 15, normalized size = 0.79 \begin {gather*} 2 \, \log \left (x + 60 \, e^{\left (\frac {e^{\left (-3\right )}}{\log \relax (5)}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 15, normalized size = 0.79 \begin {gather*} 2\,\ln \left (x+60\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-3}}{\ln \relax (5)}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 15, normalized size = 0.79 \begin {gather*} 2 \log {\left (x + 60 e^{\frac {1}{e^{3} \log {\relax (5 )}}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________