Optimal. Leaf size=25 \[ e^{\left (-2+\frac {2+x}{16+5 \left (-5-4 x+\log ^2(2)\right )}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 1.61, antiderivative size = 32, normalized size of antiderivative = 1.28, number of steps used = 3, number of rules used = 3, integrand size = 127, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6688, 12, 6706} \begin {gather*} \exp \left (\frac {\left (41 x+10 \left (2-\log ^2(2)\right )\right )^2}{\left (20 x+9-5 \log ^2(2)\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (\frac {\left (20+41 x-10 \log ^2(2)\right )^2}{\left (9+20 x-5 \log ^2(2)\right )^2}\right ) \left (20+41 x-10 \log ^2(2)\right ) \left (-31-5 \log ^2(2)\right )}{\left (9+20 x-5 \log ^2(2)\right )^3} \, dx\\ &=-\left (\left (2 \left (31+5 \log ^2(2)\right )\right ) \int \frac {\exp \left (\frac {\left (20+41 x-10 \log ^2(2)\right )^2}{\left (9+20 x-5 \log ^2(2)\right )^2}\right ) \left (20+41 x-10 \log ^2(2)\right )}{\left (9+20 x-5 \log ^2(2)\right )^3} \, dx\right )\\ &=\exp \left (\frac {\left (41 x+10 \left (2-\log ^2(2)\right )\right )^2}{\left (9+20 x-5 \log ^2(2)\right )^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 49, normalized size = 1.96 \begin {gather*} \frac {2 e^{\frac {\left (20+41 x-10 \log ^2(2)\right )^2}{\left (9+20 x-5 \log ^2(2)\right )^2}} \left (31+5 \log ^2(2)\right )}{62+10 \log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 58, normalized size = 2.32 \begin {gather*} e^{\left (\frac {100 \, \log \relax (2)^{4} - 20 \, {\left (41 \, x + 20\right )} \log \relax (2)^{2} + 1681 \, x^{2} + 1640 \, x + 400}{25 \, \log \relax (2)^{4} - 10 \, {\left (20 \, x + 9\right )} \log \relax (2)^{2} + 400 \, x^{2} + 360 \, x + 81}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.32, size = 217, normalized size = 8.68 \begin {gather*} e^{\left (\frac {100 \, \log \relax (2)^{4}}{25 \, \log \relax (2)^{4} - 200 \, x \log \relax (2)^{2} + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 360 \, x + 81} - \frac {820 \, x \log \relax (2)^{2}}{25 \, \log \relax (2)^{4} - 200 \, x \log \relax (2)^{2} + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 360 \, x + 81} + \frac {1681 \, x^{2}}{25 \, \log \relax (2)^{4} - 200 \, x \log \relax (2)^{2} + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 360 \, x + 81} - \frac {400 \, \log \relax (2)^{2}}{25 \, \log \relax (2)^{4} - 200 \, x \log \relax (2)^{2} + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 360 \, x + 81} + \frac {1640 \, x}{25 \, \log \relax (2)^{4} - 200 \, x \log \relax (2)^{2} + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 360 \, x + 81} + \frac {400}{25 \, \log \relax (2)^{4} - 200 \, x \log \relax (2)^{2} + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 360 \, x + 81}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 29, normalized size = 1.16
method | result | size |
risch | \({\mathrm e}^{\frac {\left (10 \ln \relax (2)^{2}-41 x -20\right )^{2}}{\left (5 \ln \relax (2)^{2}-20 x -9\right )^{2}}}\) | \(29\) |
gosper | \({\mathrm e}^{\frac {100 \ln \relax (2)^{4}-820 x \ln \relax (2)^{2}-400 \ln \relax (2)^{2}+1681 x^{2}+1640 x +400}{25 \ln \relax (2)^{4}-200 x \ln \relax (2)^{2}-90 \ln \relax (2)^{2}+400 x^{2}+360 x +81}}\) | \(63\) |
norman | \(\frac {\left (25 \ln \relax (2)^{4}-90 \ln \relax (2)^{2}+81\right ) {\mathrm e}^{\frac {100 \ln \relax (2)^{4}+\left (-820 x -400\right ) \ln \relax (2)^{2}+1681 x^{2}+1640 x +400}{25 \ln \relax (2)^{4}+\left (-200 x -90\right ) \ln \relax (2)^{2}+400 x^{2}+360 x +81}}+\left (-200 \ln \relax (2)^{2}+360\right ) x \,{\mathrm e}^{\frac {100 \ln \relax (2)^{4}+\left (-820 x -400\right ) \ln \relax (2)^{2}+1681 x^{2}+1640 x +400}{25 \ln \relax (2)^{4}+\left (-200 x -90\right ) \ln \relax (2)^{2}+400 x^{2}+360 x +81}}+400 x^{2} {\mathrm e}^{\frac {100 \ln \relax (2)^{4}+\left (-820 x -400\right ) \ln \relax (2)^{2}+1681 x^{2}+1640 x +400}{25 \ln \relax (2)^{4}+\left (-200 x -90\right ) \ln \relax (2)^{2}+400 x^{2}+360 x +81}}}{\left (5 \ln \relax (2)^{2}-20 x -9\right )^{2}}\) | \(214\) |
derivativedivides | \(-\frac {1271 i \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{20 \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {961 \,{\mathrm e}^{\frac {1681}{400}+\frac {\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}}{\left (-5 \ln \relax (2)^{2}+20 x +9\right )^{2}}+\frac {\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}}{-5 \ln \relax (2)^{2}+20 x +9}}}{400 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}+\frac {118203 i \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right ) \ln \relax (2)^{2}}{1600 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {1221431 i \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{8000 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}-\frac {41 i \ln \relax (2)^{2} \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{4 \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {31 \ln \relax (2)^{2} {\mathrm e}^{\frac {1681}{400}+\frac {\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}}{\left (-5 \ln \relax (2)^{2}+20 x +9\right )^{2}}+\frac {\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}}{-5 \ln \relax (2)^{2}+20 x +9}}}{40 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}+\frac {3813 i \ln \relax (2)^{4} \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{320 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {\ln \relax (2)^{4} {\mathrm e}^{\frac {1681}{400}+\frac {\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}}{\left (-5 \ln \relax (2)^{2}+20 x +9\right )^{2}}+\frac {\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}}{-5 \ln \relax (2)^{2}+20 x +9}}}{\ln \relax (2)^{4}+\frac {62 \ln \relax (2)^{2}}{5}+\frac {961}{25}}+\frac {41 i \ln \relax (2)^{6} \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{64 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\) | \(987\) |
default | \(-\frac {1271 i \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{20 \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {961 \,{\mathrm e}^{\frac {1681}{400}+\frac {\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}}{\left (-5 \ln \relax (2)^{2}+20 x +9\right )^{2}}+\frac {\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}}{-5 \ln \relax (2)^{2}+20 x +9}}}{400 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}+\frac {118203 i \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right ) \ln \relax (2)^{2}}{1600 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {1221431 i \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{8000 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}-\frac {41 i \ln \relax (2)^{2} \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{4 \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {31 \ln \relax (2)^{2} {\mathrm e}^{\frac {1681}{400}+\frac {\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}}{\left (-5 \ln \relax (2)^{2}+20 x +9\right )^{2}}+\frac {\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}}{-5 \ln \relax (2)^{2}+20 x +9}}}{40 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}+\frac {3813 i \ln \relax (2)^{4} \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{320 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}+\frac {\ln \relax (2)^{4} {\mathrm e}^{\frac {1681}{400}+\frac {\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}}{\left (-5 \ln \relax (2)^{2}+20 x +9\right )^{2}}+\frac {\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}}{-5 \ln \relax (2)^{2}+20 x +9}}}{\ln \relax (2)^{4}+\frac {62 \ln \relax (2)^{2}}{5}+\frac {961}{25}}+\frac {41 i \ln \relax (2)^{6} \sqrt {\pi }\, {\mathrm e}^{\frac {1681}{400}-\frac {\left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )^{2}}{4 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right )}} \erf \left (\frac {i \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}{-100 \ln \relax (2)^{2}+400 x +180}+\frac {10 i \left (\frac {41 \ln \relax (2)^{2}}{40}+\frac {1271}{200}\right )}{\sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\right )}{64 \left (\frac {\ln \relax (2)^{4}}{16}+\frac {31 \ln \relax (2)^{2}}{40}+\frac {961}{400}\right ) \sqrt {25 \ln \relax (2)^{4}+310 \ln \relax (2)^{2}+961}}\) | \(987\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 53.07, size = 147, normalized size = 5.88 \begin {gather*} e^{\left (\frac {\log \relax (2)^{4}}{16 \, {\left (25 \, \log \relax (2)^{4} - 40 \, {\left (5 \, \log \relax (2)^{2} - 9\right )} x + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 81\right )}} + \frac {31 \, \log \relax (2)^{2}}{40 \, {\left (25 \, \log \relax (2)^{4} - 40 \, {\left (5 \, \log \relax (2)^{2} - 9\right )} x + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 81\right )}} - \frac {41 \, \log \relax (2)^{2}}{40 \, {\left (5 \, \log \relax (2)^{2} - 20 \, x - 9\right )}} + \frac {961}{400 \, {\left (25 \, \log \relax (2)^{4} - 40 \, {\left (5 \, \log \relax (2)^{2} - 9\right )} x + 400 \, x^{2} - 90 \, \log \relax (2)^{2} + 81\right )}} - \frac {1271}{200 \, {\left (5 \, \log \relax (2)^{2} - 20 \, x - 9\right )}} + \frac {1681}{400}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.52, size = 222, normalized size = 8.88 \begin {gather*} {\mathrm {e}}^{\frac {1640\,x}{360\,x-200\,x\,{\ln \relax (2)}^2-90\,{\ln \relax (2)}^2+25\,{\ln \relax (2)}^4+400\,x^2+81}}\,{\mathrm {e}}^{\frac {100\,{\ln \relax (2)}^4}{360\,x-200\,x\,{\ln \relax (2)}^2-90\,{\ln \relax (2)}^2+25\,{\ln \relax (2)}^4+400\,x^2+81}}\,{\mathrm {e}}^{-\frac {400\,{\ln \relax (2)}^2}{360\,x-200\,x\,{\ln \relax (2)}^2-90\,{\ln \relax (2)}^2+25\,{\ln \relax (2)}^4+400\,x^2+81}}\,{\mathrm {e}}^{\frac {1681\,x^2}{360\,x-200\,x\,{\ln \relax (2)}^2-90\,{\ln \relax (2)}^2+25\,{\ln \relax (2)}^4+400\,x^2+81}}\,{\mathrm {e}}^{\frac {400}{360\,x-200\,x\,{\ln \relax (2)}^2-90\,{\ln \relax (2)}^2+25\,{\ln \relax (2)}^4+400\,x^2+81}}\,{\mathrm {e}}^{-\frac {820\,x\,{\ln \relax (2)}^2}{360\,x-200\,x\,{\ln \relax (2)}^2-90\,{\ln \relax (2)}^2+25\,{\ln \relax (2)}^4+400\,x^2+81}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.77, size = 58, normalized size = 2.32 \begin {gather*} e^{\frac {1681 x^{2} + 1640 x + \left (- 820 x - 400\right ) \log {\relax (2 )}^{2} + 100 \log {\relax (2 )}^{4} + 400}{400 x^{2} + 360 x + \left (- 200 x - 90\right ) \log {\relax (2 )}^{2} + 25 \log {\relax (2 )}^{4} + 81}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________