Optimal. Leaf size=24 \[ e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (4+16 x)+e^{2 x} \left (x+2 x^2\right ) \log ^2\left (3 x+6 x^2\right )+\left (e^{2 x} \left (-4-16 x-16 x^2\right ) \log \left (3 x+6 x^2\right )+e^{2 x} \left (4+17 x+20 x^2+4 x^3\right ) \log ^2\left (3 x+6 x^2\right )\right ) \log \left (\frac {-4+(4+x) \log \left (3 x+6 x^2\right )}{\log \left (3 x+6 x^2\right )}\right )}{(-4-8 x) \log \left (3 x+6 x^2\right )+\left (4+9 x+2 x^2\right ) \log ^2\left (3 x+6 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (-4-16 x-x (1+2 x) \log ^2(3 x (1+2 x))-(1+2 x)^2 \log (3 x (1+2 x)) (-4+(4+x) \log (3 x (1+2 x))) \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right )\right )}{(1+2 x) \log (3 x (1+2 x)) (4-(4+x) \log (3 x (1+2 x)))} \, dx\\ &=\int \left (\frac {e^{2 x} \left (4+16 x+x \log ^2(3 x (1+2 x))+2 x^2 \log ^2(3 x (1+2 x))\right )}{(1+2 x) \log (3 x (1+2 x)) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))}+e^{2 x} (1+2 x) \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right )\right ) \, dx\\ &=\int \frac {e^{2 x} \left (4+16 x+x \log ^2(3 x (1+2 x))+2 x^2 \log ^2(3 x (1+2 x))\right )}{(1+2 x) \log (3 x (1+2 x)) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))} \, dx+\int e^{2 x} (1+2 x) \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx\\ &=\int \frac {e^{2 x} \left (-4-16 x-x (1+2 x) \log ^2(3 x (1+2 x))\right )}{(1+2 x) \log (3 x (1+2 x)) (4-(4+x) \log (3 x (1+2 x)))} \, dx+\int \left (e^{2 x} \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right )+2 e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right )\right ) \, dx\\ &=2 \int e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx+\int \left (\frac {e^{2 x} x}{4+x}+\frac {e^{2 x} (-1-4 x)}{(1+2 x) \log (3 x (1+2 x))}+\frac {4 e^{2 x} x}{(4+x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))}+\frac {e^{2 x} (4+x) (1+4 x)}{(1+2 x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))}\right ) \, dx+\int e^{2 x} \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx\\ &=2 \int e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx+4 \int \frac {e^{2 x} x}{(4+x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))} \, dx+\int \frac {e^{2 x} x}{4+x} \, dx+\int \frac {e^{2 x} (-1-4 x)}{(1+2 x) \log (3 x (1+2 x))} \, dx+\int \frac {e^{2 x} (4+x) (1+4 x)}{(1+2 x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))} \, dx+\int e^{2 x} \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx\\ &=2 \int e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx+4 \int \left (\frac {e^{2 x}}{-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x))}-\frac {4 e^{2 x}}{(4+x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))}\right ) \, dx+\int \left (e^{2 x}-\frac {4 e^{2 x}}{4+x}\right ) \, dx+\int \left (-\frac {2 e^{2 x}}{\log (3 x (1+2 x))}+\frac {e^{2 x}}{(1+2 x) \log (3 x (1+2 x))}\right ) \, dx+\int \left (\frac {15 e^{2 x}}{2 (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))}+\frac {2 e^{2 x} x}{-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x))}-\frac {7 e^{2 x}}{2 (1+2 x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))}\right ) \, dx+\int e^{2 x} \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2 x}}{\log (3 x (1+2 x))} \, dx\right )+2 \int \frac {e^{2 x} x}{-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x))} \, dx+2 \int e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx-\frac {7}{2} \int \frac {e^{2 x}}{(1+2 x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))} \, dx-4 \int \frac {e^{2 x}}{4+x} \, dx+4 \int \frac {e^{2 x}}{-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x))} \, dx+\frac {15}{2} \int \frac {e^{2 x}}{-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x))} \, dx-16 \int \frac {e^{2 x}}{(4+x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))} \, dx+\int e^{2 x} \, dx+\int \frac {e^{2 x}}{(1+2 x) \log (3 x (1+2 x))} \, dx+\int e^{2 x} \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx\\ &=\frac {e^{2 x}}{2}-\frac {4 \text {Ei}(2 (4+x))}{e^8}-2 \int \frac {e^{2 x}}{\log (3 x (1+2 x))} \, dx+2 \int \frac {e^{2 x} x}{-4+(4+x) \log (3 x (1+2 x))} \, dx+2 \int e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx-\frac {7}{2} \int \frac {e^{2 x}}{(1+2 x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))} \, dx+4 \int \frac {e^{2 x}}{-4+(4+x) \log (3 x (1+2 x))} \, dx+\frac {15}{2} \int \frac {e^{2 x}}{-4+(4+x) \log (3 x (1+2 x))} \, dx-16 \int \frac {e^{2 x}}{(4+x) (-4+4 \log (3 x (1+2 x))+x \log (3 x (1+2 x)))} \, dx+\int \frac {e^{2 x}}{(1+2 x) \log (3 x (1+2 x))} \, dx+\int e^{2 x} \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 24, normalized size = 1.00 \begin {gather*} e^{2 x} x \log \left (4+x-\frac {4}{\log (3 x (1+2 x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 36, normalized size = 1.50 \begin {gather*} x e^{\left (2 \, x\right )} \log \left (\frac {{\left (x + 4\right )} \log \left (6 \, x^{2} + 3 \, x\right ) - 4}{\log \left (6 \, x^{2} + 3 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.63, size = 2063, normalized size = 85.96
method | result | size |
risch | \(\text {Expression too large to display}\) | \(2063\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 58, normalized size = 2.42 \begin {gather*} x e^{\left (2 \, x\right )} \log \left (x {\left (\log \relax (3) + \log \left (2 \, x + 1\right )\right )} + {\left (x + 4\right )} \log \relax (x) + 4 \, \log \relax (3) + 4 \, \log \left (2 \, x + 1\right ) - 4\right ) - x e^{\left (2 \, x\right )} \log \left (\log \relax (3) + \log \left (2 \, x + 1\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.79, size = 36, normalized size = 1.50 \begin {gather*} x\,{\mathrm {e}}^{2\,x}\,\ln \left (\frac {\ln \left (6\,x^2+3\,x\right )\,\left (x+4\right )-4}{\ln \left (6\,x^2+3\,x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________