Optimal. Leaf size=17 \[ \frac {(1-x) x^{x+x^2}}{\log (5)} \]
________________________________________________________________________________________
Rubi [F] time = 0.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^{x+x^2} \left (-x^2+\left (1+x-2 x^2\right ) \log (x)\right )}{\log (5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int x^{x+x^2} \left (-x^2+\left (1+x-2 x^2\right ) \log (x)\right ) \, dx}{\log (5)}\\ &=\frac {\int x^{x (1+x)} \left (-x^2+\left (1+x-2 x^2\right ) \log (x)\right ) \, dx}{\log (5)}\\ &=\frac {\int \left (-x^{2+x (1+x)}-x^{x (1+x)} \left (-1-x+2 x^2\right ) \log (x)\right ) \, dx}{\log (5)}\\ &=-\frac {\int x^{2+x (1+x)} \, dx}{\log (5)}-\frac {\int x^{x (1+x)} \left (-1-x+2 x^2\right ) \log (x) \, dx}{\log (5)}\\ &=-\frac {\int x^{2+x+x^2} \, dx}{\log (5)}+\frac {\int \frac {-\int x^{x (1+x)} \, dx-\int x^{1+x+x^2} \, dx+2 \int x^{2+x+x^2} \, dx}{x} \, dx}{\log (5)}+\frac {\log (x) \int x^{x (1+x)} \, dx}{\log (5)}+\frac {\log (x) \int x^{1+x+x^2} \, dx}{\log (5)}-\frac {(2 \log (x)) \int x^{2+x+x^2} \, dx}{\log (5)}\\ &=-\frac {\int x^{2+x+x^2} \, dx}{\log (5)}+\frac {\int \left (\frac {-\int x^{x (1+x)} \, dx-\int x^{1+x+x^2} \, dx}{x}+\frac {2 \int x^{2+x+x^2} \, dx}{x}\right ) \, dx}{\log (5)}+\frac {\log (x) \int x^{x (1+x)} \, dx}{\log (5)}+\frac {\log (x) \int x^{1+x+x^2} \, dx}{\log (5)}-\frac {(2 \log (x)) \int x^{2+x+x^2} \, dx}{\log (5)}\\ &=-\frac {\int x^{2+x+x^2} \, dx}{\log (5)}+\frac {\int \frac {-\int x^{x (1+x)} \, dx-\int x^{1+x+x^2} \, dx}{x} \, dx}{\log (5)}+\frac {2 \int \frac {\int x^{2+x+x^2} \, dx}{x} \, dx}{\log (5)}+\frac {\log (x) \int x^{x (1+x)} \, dx}{\log (5)}+\frac {\log (x) \int x^{1+x+x^2} \, dx}{\log (5)}-\frac {(2 \log (x)) \int x^{2+x+x^2} \, dx}{\log (5)}\\ &=-\frac {\int x^{2+x+x^2} \, dx}{\log (5)}+\frac {\int \left (-\frac {\int x^{x (1+x)} \, dx}{x}-\frac {\int x^{1+x+x^2} \, dx}{x}\right ) \, dx}{\log (5)}+\frac {2 \int \frac {\int x^{2+x+x^2} \, dx}{x} \, dx}{\log (5)}+\frac {\log (x) \int x^{x (1+x)} \, dx}{\log (5)}+\frac {\log (x) \int x^{1+x+x^2} \, dx}{\log (5)}-\frac {(2 \log (x)) \int x^{2+x+x^2} \, dx}{\log (5)}\\ &=-\frac {\int x^{2+x+x^2} \, dx}{\log (5)}-\frac {\int \frac {\int x^{x (1+x)} \, dx}{x} \, dx}{\log (5)}-\frac {\int \frac {\int x^{1+x+x^2} \, dx}{x} \, dx}{\log (5)}+\frac {2 \int \frac {\int x^{2+x+x^2} \, dx}{x} \, dx}{\log (5)}+\frac {\log (x) \int x^{x (1+x)} \, dx}{\log (5)}+\frac {\log (x) \int x^{1+x+x^2} \, dx}{\log (5)}-\frac {(2 \log (x)) \int x^{2+x+x^2} \, dx}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 16, normalized size = 0.94 \begin {gather*} -\frac {(-1+x) x^{x (1+x)}}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 16, normalized size = 0.94 \begin {gather*} -\frac {{\left (x - 1\right )} x^{x^{2} + x}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.47, size = 35, normalized size = 2.06 \begin {gather*} -\frac {x e^{\left (x^{2} \log \relax (x) + x \log \relax (x)\right )} - e^{\left (x^{2} \log \relax (x) + x \log \relax (x)\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 1.06
method | result | size |
risch | \(\frac {\left (1-x \right ) x^{\left (x +1\right ) x}}{\ln \relax (5)}\) | \(18\) |
norman | \(\frac {{\mathrm e}^{\left (x^{2}+x \right ) \ln \relax (x )}}{\ln \relax (5)}-\frac {x \,{\mathrm e}^{\left (x^{2}+x \right ) \ln \relax (x )}}{\ln \relax (5)}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 21, normalized size = 1.24 \begin {gather*} -\frac {{\left (x - 1\right )} e^{\left (x^{2} \log \relax (x) + x \log \relax (x)\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 16, normalized size = 0.94 \begin {gather*} -\frac {x^{x^2+x}\,\left (x-1\right )}{\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 15, normalized size = 0.88 \begin {gather*} \frac {\left (1 - x\right ) e^{\left (x^{2} + x\right ) \log {\relax (x )}}}{\log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________