Optimal. Leaf size=21 \[ 18 e^{-e^{3-x+2 x \log (x)}} (-1+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 40, normalized size of antiderivative = 1.90, number of steps used = 1, number of rules used = 1, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {2288} \begin {gather*} -\frac {18 e^{-e^{3-x} x^{2 x}} (-x+2 (1-x) \log (x)+1)}{2 \log (x)+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {18 e^{-e^{3-x} x^{2 x}} (1-x+2 (1-x) \log (x))}{1+2 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 21, normalized size = 1.00 \begin {gather*} 18 e^{-e^{3-x} x^{2 x}} (-1+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 19, normalized size = 0.90 \begin {gather*} 18 \, {\left (x - 1\right )} e^{\left (-e^{\left (2 \, x \log \relax (x) - x + 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -18 \, {\left ({\left (2 \, {\left (x - 1\right )} \log \relax (x) + x - 1\right )} e^{\left (2 \, x \log \relax (x) - x + 3\right )} - 1\right )} e^{\left (-e^{\left (2 \, x \log \relax (x) - x + 3\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 21, normalized size = 1.00
method | result | size |
norman | \(\left (18 x -18\right ) {\mathrm e}^{-{\mathrm e}^{2 x \ln \relax (x )+3-x}}\) | \(21\) |
risch | \(\left (18 x -18\right ) {\mathrm e}^{-x^{2 x} {\mathrm e}^{3-x}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 19, normalized size = 0.90 \begin {gather*} 18 \, {\left (x - 1\right )} e^{\left (-e^{\left (2 \, x \log \relax (x) - x + 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.26, size = 19, normalized size = 0.90 \begin {gather*} 18\,{\mathrm {e}}^{-x^{2\,x}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3}\,\left (x-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.65, size = 17, normalized size = 0.81 \begin {gather*} \left (18 x - 18\right ) e^{- e^{2 x \log {\relax (x )} - x + 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________