Optimal. Leaf size=22 \[ \frac {4 \left (x+\left (\frac {4 e^x}{x^3}-\log (x)\right )^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 41, normalized size of antiderivative = 1.86, number of steps used = 6, number of rules used = 6, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {14, 2197, 2304, 2366, 2303, 2288} \begin {gather*} \frac {64 e^{2 x}}{x^7}-\frac {32 e^x \log (x)}{x^4}-\frac {4 (2-\log (x)) \log (x)}{x}+\frac {8 \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rule 2288
Rule 2303
Rule 2304
Rule 2366
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {64 e^{2 x} (-7+2 x)}{x^8}-\frac {4 (-2+\log (x)) \log (x)}{x^2}-\frac {32 e^x (1-4 \log (x)+x \log (x))}{x^5}\right ) \, dx\\ &=-\left (4 \int \frac {(-2+\log (x)) \log (x)}{x^2} \, dx\right )-32 \int \frac {e^x (1-4 \log (x)+x \log (x))}{x^5} \, dx+64 \int \frac {e^{2 x} (-7+2 x)}{x^8} \, dx\\ &=\frac {64 e^{2 x}}{x^7}-\frac {32 e^x \log (x)}{x^4}+\frac {4 \log (x)}{x}-\frac {4 (2-\log (x)) \log (x)}{x}+4 \int \frac {1-\log (x)}{x^2} \, dx\\ &=\frac {64 e^{2 x}}{x^7}-\frac {32 e^x \log (x)}{x^4}+\frac {8 \log (x)}{x}-\frac {4 (2-\log (x)) \log (x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 19, normalized size = 0.86 \begin {gather*} \frac {4 \left (-4 e^x+x^3 \log (x)\right )^2}{x^7} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.24, size = 29, normalized size = 1.32 \begin {gather*} \frac {4 \, {\left (x^{6} \log \relax (x)^{2} - 8 \, x^{3} e^{x} \log \relax (x) + 16 \, e^{\left (2 \, x\right )}\right )}}{x^{7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 29, normalized size = 1.32 \begin {gather*} \frac {4 \, {\left (x^{6} \log \relax (x)^{2} - 8 \, x^{3} e^{x} \log \relax (x) + 16 \, e^{\left (2 \, x\right )}\right )}}{x^{7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 29, normalized size = 1.32
method | result | size |
risch | \(\frac {4 \ln \relax (x )^{2}}{x}-\frac {32 \,{\mathrm e}^{x} \ln \relax (x )}{x^{4}}+\frac {64 \,{\mathrm e}^{2 x}}{x^{7}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {8 \, \log \relax (x)}{x} - \frac {8}{x} + \frac {4 \, {\left (x^{3} \log \relax (x)^{2} + 2 \, x^{3} \log \relax (x) + 2 \, x^{3} - 8 \, e^{x} \log \relax (x)\right )}}{x^{4}} + 32 \, \Gamma \left (-4, -x\right ) - 8192 \, \Gamma \left (-6, -2 \, x\right ) - 57344 \, \Gamma \left (-7, -2 \, x\right ) + 32 \, \int \frac {e^{x}}{x^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 102, normalized size = 4.64 \begin {gather*} \frac {4\,\mathrm {ei}\relax (x)}{3}+\frac {4\,\mathrm {expint}\left (-x\right )}{3}+\frac {4\,\left ({\ln \relax (x)}^2+2\,\ln \relax (x)+2\right )}{x}+\frac {64\,{\mathrm {e}}^{2\,x}}{x^7}+32\,{\mathrm {e}}^x\,\left (\frac {1}{24\,x}+\frac {1}{24\,x^2}+\frac {1}{12\,x^3}+\frac {1}{4\,x^4}\right )-\frac {8\,{\mathrm {e}}^x+\frac {4\,x^2\,{\mathrm {e}}^x}{3}+x^3\,\left (\frac {4\,{\mathrm {e}}^x}{3}+8\,\ln \relax (x)+8\right )+32\,{\mathrm {e}}^x\,\ln \relax (x)+\frac {8\,x\,{\mathrm {e}}^x}{3}}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 32, normalized size = 1.45 \begin {gather*} \frac {4 \log {\relax (x )}^{2}}{x} + \frac {- 32 x^{7} e^{x} \log {\relax (x )} + 64 x^{4} e^{2 x}}{x^{11}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________