Optimal. Leaf size=25 \[ x \log \left (\frac {x}{2 \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.68, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 4, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6741, 6742, 6688, 2549} \begin {gather*} x \log \left (-\frac {x}{2 \left (x \left (-\log \left (\log \left (x^4\right )\right )\right )+x-e^x+4\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2549
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x-\left (-4+e^x (1-x)\right ) \log \left (x^4\right )-\left (\left (-4+e^x-x\right ) \log \left (x^4\right )+x \log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )\right ) \log \left (\frac {x}{-8+2 e^x-2 x+2 x \log \left (\log \left (x^4\right )\right )}\right )}{\log \left (x^4\right ) \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )} \, dx\\ &=\int \left (1-x+\frac {x \left (-4-3 \log \left (x^4\right )-x \log \left (x^4\right )-\log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )+x \log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )\right )}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}+\log \left (\frac {x}{2 \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}\right )\right ) \, dx\\ &=x-\frac {x^2}{2}+\int \frac {x \left (-4-3 \log \left (x^4\right )-x \log \left (x^4\right )-\log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )+x \log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )\right )}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )} \, dx+\int \log \left (\frac {x}{2 \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}\right ) \, dx\\ &=x-\frac {x^2}{2}+x \log \left (-\frac {x}{2 \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )}\right )-\int \frac {-4 x+\left (-4-e^x (-1+x)\right ) \log \left (x^4\right )}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )} \, dx+\int \frac {x \left (4-\log \left (x^4\right ) \left (-3-x+(-1+x) \log \left (\log \left (x^4\right )\right )\right )\right )}{\log \left (x^4\right ) \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )} \, dx\\ &=x-\frac {x^2}{2}+x \log \left (-\frac {x}{2 \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )}\right )+\int \left (-\frac {3 x}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}-\frac {x^2}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}-\frac {4 x}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}-\frac {x \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}+\frac {x^2 \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}\right ) \, dx-\int \left (1-x+\frac {x \left (-4-3 \log \left (x^4\right )-x \log \left (x^4\right )-\log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )+x \log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )\right )}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}\right ) \, dx\\ &=x \log \left (-\frac {x}{2 \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )}\right )-3 \int \frac {x}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-4 \int \frac {x}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )} \, dx-\int \frac {x^2}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-\int \frac {x \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx+\int \frac {x^2 \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-\int \frac {x \left (-4-3 \log \left (x^4\right )-x \log \left (x^4\right )-\log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )+x \log \left (x^4\right ) \log \left (\log \left (x^4\right )\right )\right )}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )} \, dx\\ &=x \log \left (-\frac {x}{2 \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )}\right )-3 \int \frac {x}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-4 \int \frac {x}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )} \, dx-\int \frac {x^2}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-\int \frac {x \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx+\int \frac {x^2 \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-\int \frac {x \left (4-\log \left (x^4\right ) \left (-3-x+(-1+x) \log \left (\log \left (x^4\right )\right )\right )\right )}{\log \left (x^4\right ) \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )} \, dx\\ &=x \log \left (-\frac {x}{2 \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )}\right )-3 \int \frac {x}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-4 \int \frac {x}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )} \, dx-\int \frac {x^2}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-\int \frac {x \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx+\int \frac {x^2 \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )} \, dx-\int \left (-\frac {3 x}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}-\frac {x^2}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}-\frac {4 x}{\log \left (x^4\right ) \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}-\frac {x \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}+\frac {x^2 \log \left (\log \left (x^4\right )\right )}{-4+e^x-x+x \log \left (\log \left (x^4\right )\right )}\right ) \, dx\\ &=x \log \left (-\frac {x}{2 \left (4-e^x+x-x \log \left (\log \left (x^4\right )\right )\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 25, normalized size = 1.00 \begin {gather*} x \log \left (\frac {x}{2 \left (-4+e^x-x+x \log \left (\log \left (x^4\right )\right )\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 22, normalized size = 0.88 \begin {gather*} x \log \left (\frac {x}{2 \, {\left (x \log \left (\log \left (x^{4}\right )\right ) - x + e^{x} - 4\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x - 1\right )} e^{x} + 4\right )} \log \left (x^{4}\right ) - {\left (x \log \left (x^{4}\right ) \log \left (\log \left (x^{4}\right )\right ) - {\left (x - e^{x} + 4\right )} \log \left (x^{4}\right )\right )} \log \left (\frac {x}{2 \, {\left (x \log \left (\log \left (x^{4}\right )\right ) - x + e^{x} - 4\right )}}\right ) + 4 \, x}{x \log \left (x^{4}\right ) \log \left (\log \left (x^{4}\right )\right ) - {\left (x - e^{x} + 4\right )} \log \left (x^{4}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.33, size = 994, normalized size = 39.76
method | result | size |
risch | \(-x \ln \left (x \ln \left (4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )-x +{\mathrm e}^{x}-4\right )+x \ln \relax (x )+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x \ln \left (4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )-x +{\mathrm e}^{x}-4}\right ) \mathrm {csgn}\left (\frac {i x}{x \ln \left (4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )-x +{\mathrm e}^{x}-4}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x \ln \left (4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )-x +{\mathrm e}^{x}-4}\right ) \mathrm {csgn}\left (\frac {i x}{x \ln \left (4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )-x +{\mathrm e}^{x}-4}\right ) \mathrm {csgn}\left (i x \right )}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i x}{x \ln \left (4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )-x +{\mathrm e}^{x}-4}\right )^{2} \mathrm {csgn}\left (i x \right )}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i x}{x \ln \left (4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )-x +{\mathrm e}^{x}-4}\right )^{3}}{2}-x \ln \relax (2)\) | \(994\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 31, normalized size = 1.24 \begin {gather*} -x \log \relax (2) - x \log \left (x {\left (2 \, \log \relax (2) - 1\right )} + x \log \left (\log \relax (x)\right ) + e^{x} - 4\right ) + x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.99, size = 25, normalized size = 1.00 \begin {gather*} x\,\ln \left (-\frac {x}{2\,x-2\,{\mathrm {e}}^x-2\,x\,\ln \left (\ln \left (x^4\right )\right )+8}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 14.61, size = 24, normalized size = 0.96 \begin {gather*} x \log {\left (\frac {x}{2 x \log {\left (\log {\left (x^{4} \right )} \right )} - 2 x + 2 e^{x} - 8} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________