3.58.61 \(\int \frac {-1-4 x+e^x x}{x} \, dx\)

Optimal. Leaf size=12 \[ -2+e^x-4 x-\log (x) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 11, normalized size of antiderivative = 0.92, number of steps used = 5, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {14, 2194, 43} \begin {gather*} -4 x+e^x-\log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-1 - 4*x + E^x*x)/x,x]

[Out]

E^x - 4*x - Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+\frac {-1-4 x}{x}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {-1-4 x}{x} \, dx\\ &=e^x+\int \left (-4-\frac {1}{x}\right ) \, dx\\ &=e^x-4 x-\log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 11, normalized size = 0.92 \begin {gather*} e^x-4 x-\log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-1 - 4*x + E^x*x)/x,x]

[Out]

E^x - 4*x - Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 10, normalized size = 0.83 \begin {gather*} -4 \, x + e^{x} - \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(x)*x-4*x-1)/x,x, algorithm="fricas")

[Out]

-4*x + e^x - log(x)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 10, normalized size = 0.83 \begin {gather*} -4 \, x + e^{x} - \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(x)*x-4*x-1)/x,x, algorithm="giac")

[Out]

-4*x + e^x - log(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 11, normalized size = 0.92




method result size



default \(-\ln \relax (x )-4 x +{\mathrm e}^{x}\) \(11\)
norman \(-\ln \relax (x )-4 x +{\mathrm e}^{x}\) \(11\)
risch \(-\ln \relax (x )-4 x +{\mathrm e}^{x}\) \(11\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*x-4*x-1)/x,x,method=_RETURNVERBOSE)

[Out]

-ln(x)-4*x+exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 10, normalized size = 0.83 \begin {gather*} -4 \, x + e^{x} - \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(x)*x-4*x-1)/x,x, algorithm="maxima")

[Out]

-4*x + e^x - log(x)

________________________________________________________________________________________

mupad [B]  time = 3.51, size = 10, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^x-4\,x-\ln \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*x - x*exp(x) + 1)/x,x)

[Out]

exp(x) - 4*x - log(x)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 8, normalized size = 0.67 \begin {gather*} - 4 x + e^{x} - \log {\relax (x )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(x)*x-4*x-1)/x,x)

[Out]

-4*x + exp(x) - log(x)

________________________________________________________________________________________