3.58.52 \(\int \frac {4-4 x}{x} \, dx\)

Optimal. Leaf size=11 \[ -1+4 (1-x+\log (x)) \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 8, normalized size of antiderivative = 0.73, number of steps used = 2, number of rules used = 1, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {43} \begin {gather*} 4 \log (x)-4 x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(4 - 4*x)/x,x]

[Out]

-4*x + 4*Log[x]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-4+\frac {4}{x}\right ) \, dx\\ &=-4 x+4 \log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 8, normalized size = 0.73 \begin {gather*} -4 x+4 \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4 - 4*x)/x,x]

[Out]

-4*x + 4*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 8, normalized size = 0.73 \begin {gather*} -4 \, x + 4 \, \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x+4)/x,x, algorithm="fricas")

[Out]

-4*x + 4*log(x)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 9, normalized size = 0.82 \begin {gather*} -4 \, x + 4 \, \log \left ({\left | x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x+4)/x,x, algorithm="giac")

[Out]

-4*x + 4*log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 9, normalized size = 0.82




method result size



default \(4 \ln \relax (x )-4 x\) \(9\)
norman \(4 \ln \relax (x )-4 x\) \(9\)
risch \(4 \ln \relax (x )-4 x\) \(9\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-4*x+4)/x,x,method=_RETURNVERBOSE)

[Out]

4*ln(x)-4*x

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 8, normalized size = 0.73 \begin {gather*} -4 \, x + 4 \, \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x+4)/x,x, algorithm="maxima")

[Out]

-4*x + 4*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.02, size = 8, normalized size = 0.73 \begin {gather*} 4\,\ln \relax (x)-4\,x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*x - 4)/x,x)

[Out]

4*log(x) - 4*x

________________________________________________________________________________________

sympy [A]  time = 0.06, size = 7, normalized size = 0.64 \begin {gather*} - 4 x + 4 \log {\relax (x )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x+4)/x,x)

[Out]

-4*x + 4*log(x)

________________________________________________________________________________________