Optimal. Leaf size=30 \[ \frac {1+\frac {9}{x}}{1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 10.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9-9 e^x+9 x+\left (36+58 x+6 x^2+e^x \left (-36-22 x-2 x^2\right )\right ) \log \left (\frac {1}{5} \left (x^2-e^x x^2+x^3\right )\right )+\left (9-9 e^x+9 x\right ) \log ^2\left (\frac {1}{5} \left (x^2-e^x x^2+x^3\right )\right )}{-x^2+e^x x^2-x^3+\left (-2 x^2+2 e^x x^2-2 x^3\right ) \log ^2\left (\frac {1}{5} \left (x^2-e^x x^2+x^3\right )\right )+\left (-x^2+e^x x^2-x^3\right ) \log ^4\left (\frac {1}{5} \left (x^2-e^x x^2+x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 \left (-1+e^x-x\right )+2 (9+x) \left (-2-3 x+e^x (2+x)\right ) \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )+9 \left (-1+e^x-x\right ) \log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1-e^x+x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\\ &=\int \left (-\frac {2 (9+x) \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}+\frac {-9-36 \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )-22 x \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )-2 x^2 \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )-9 \log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {(9+x) \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\right )+\int \frac {-9-36 \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )-22 x \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )-2 x^2 \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )-9 \log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\\ &=-\left (2 \int \left (\frac {9 \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}+\frac {x \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}\right ) \, dx\right )+\int \frac {-9-2 \left (18+11 x+x^2\right ) \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )-9 \log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {x \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\right )-18 \int \frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx+\int \left (-\frac {2 \left (18+11 x+x^2\right ) \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}-\frac {9}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\right )-2 \int \frac {\left (18+11 x+x^2\right ) \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx-9 \int \frac {1}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )} \, dx-18 \int \frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {x \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\right )-2 \int \left (\frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}+\frac {18 \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}+\frac {11 \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2}\right ) \, dx-9 \int \frac {1}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )} \, dx-18 \int \frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\right )-2 \int \frac {x \log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx-9 \int \frac {1}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )} \, dx-18 \int \frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{\left (-1+e^x-x\right ) \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx-22 \int \frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx-36 \int \frac {\log \left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )}{x^2 \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 29, normalized size = 0.97 \begin {gather*} \frac {9+x}{x \left (1+\log ^2\left (\frac {1}{5} x^2 \left (1-e^x+x\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 31, normalized size = 1.03 \begin {gather*} \frac {x + 9}{x \log \left (\frac {1}{5} \, x^{3} - \frac {1}{5} \, x^{2} e^{x} + \frac {1}{5} \, x^{2}\right )^{2} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 30.22, size = 31, normalized size = 1.03 \begin {gather*} \frac {x + 9}{x \log \left (\frac {1}{5} \, x^{3} - \frac {1}{5} \, x^{2} e^{x} + \frac {1}{5} \, x^{2}\right )^{2} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 13.87, size = 1503, normalized size = 50.10
method | result | size |
risch | \(-\frac {4 \left (x +9\right )}{x \left (-4-4 \ln \relax (5)^{2}-16 \ln \relax (x )^{2}+8 \ln \relax (5) \ln \left (1-{\mathrm e}^{x}+x \right )-16 \ln \relax (x ) \ln \left (1-{\mathrm e}^{x}+x \right )+4 i \ln \left (1-{\mathrm e}^{x}+x \right ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}+\pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{6}+16 \ln \relax (5) \ln \relax (x )+\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}-4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}+2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )-2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}+4 i \ln \left (1-{\mathrm e}^{x}+x \right ) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right ) \mathrm {csgn}\left (i x^{2}\right )-4 i \ln \relax (5) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right ) \mathrm {csgn}\left (i x^{2}\right )+8 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right ) \mathrm {csgn}\left (i x^{2}\right )-16 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-4 i \ln \left (1-{\mathrm e}^{x}+x \right ) \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3}+4 i \ln \relax (5) \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3}-8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3}+\pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{2}+6 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+\pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3}+2 \pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{5} \mathrm {csgn}\left (i x^{2}\right )+\pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{4}-2 \pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{5}+2 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3} \mathrm {csgn}\left (i x^{2}\right )-4 i \ln \relax (5) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}-4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}-4 i \ln \relax (5) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+8 i \ln \relax (5) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-4 \ln \left (1-{\mathrm e}^{x}+x \right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{4} \mathrm {csgn}\left (i x^{2}\right )+8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-4 i \ln \relax (5) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}+8 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}+4 i \ln \left (1-{\mathrm e}^{x}+x \right ) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )-4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )+8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 i \ln \left (1-{\mathrm e}^{x}+x \right ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 i \ln \left (1-{\mathrm e}^{x}+x \right ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \ln \relax (5) \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2} \mathrm {csgn}\left (i x^{2}\right )-4 i \ln \left (1-{\mathrm e}^{x}+x \right ) \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x -1\right ) x^{2}\right )^{3}\right )}\) | \(1503\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.97, size = 61, normalized size = 2.03 \begin {gather*} \frac {x + 9}{x \log \left (x - e^{x} + 1\right )^{2} - 4 \, x \log \relax (5) \log \relax (x) + 4 \, x \log \relax (x)^{2} + {\left (\log \relax (5)^{2} + 1\right )} x - 2 \, {\left (x \log \relax (5) - 2 \, x \log \relax (x)\right )} \log \left (x - e^{x} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.89, size = 51, normalized size = 1.70 \begin {gather*} \frac {\left (x+9\right )\,\left (x-x\,{\mathrm {e}}^x+x^2\right )}{x^2\,\left ({\ln \left (\frac {x^2}{5}-\frac {x^2\,{\mathrm {e}}^x}{5}+\frac {x^3}{5}\right )}^2+1\right )\,\left (x-{\mathrm {e}}^x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 27, normalized size = 0.90 \begin {gather*} \frac {x + 9}{x \log {\left (\frac {x^{3}}{5} - \frac {x^{2} e^{x}}{5} + \frac {x^{2}}{5} \right )}^{2} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________