Optimal. Leaf size=30 \[ 4^{\frac {4}{\frac {e^4 x}{4}+\frac {e^x+(5-x) x}{x}}} \]
________________________________________________________________________________________
Rubi [A] time = 0.83, antiderivative size = 28, normalized size of antiderivative = 0.93, number of steps used = 4, number of rules used = 4, integrand size = 126, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6, 6688, 12, 6706} \begin {gather*} 4^{\frac {16 x}{e^4 x^2+4 (5-x) x+4 e^x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4^{\frac {16 x}{4 e^x+20 x-4 x^2+e^4 x^2}} \left (e^x (64-64 x) \log (4)+\left (64 x^2-16 e^4 x^2\right ) \log (4)\right )}{16 e^{2 x}+400 x^2-160 x^3+\left (16+e^8\right ) x^4+e^x \left (160 x-32 x^2+8 e^4 x^2\right )+e^4 \left (40 x^3-8 x^4\right )} \, dx\\ &=\int \frac {4^{2+\frac {16 x}{4 e^x-4 (-5+x) x+e^4 x^2}} \left (-4 e^x (-1+x)+4 \left (1-\frac {e^4}{4}\right ) x^2\right ) \log (4)}{\left (4 e^x-4 (-5+x) x+e^4 x^2\right )^2} \, dx\\ &=\log (4) \int \frac {4^{2+\frac {16 x}{4 e^x-4 (-5+x) x+e^4 x^2}} \left (-4 e^x (-1+x)+4 \left (1-\frac {e^4}{4}\right ) x^2\right )}{\left (4 e^x-4 (-5+x) x+e^4 x^2\right )^2} \, dx\\ &=4^{\frac {16 x}{4 e^x+4 (5-x) x+e^4 x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.90, size = 28, normalized size = 0.93 \begin {gather*} 4^{\frac {16 x}{4 e^x+20 x-4 x^2+e^4 x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 26, normalized size = 0.87 \begin {gather*} 2^{\frac {32 \, x}{x^{2} e^{4} - 4 \, x^{2} + 20 \, x + 4 \, e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {32 \, {\left (4 \, {\left (x - 1\right )} e^{x} \log \relax (2) + {\left (x^{2} e^{4} - 4 \, x^{2}\right )} \log \relax (2)\right )} 2^{\frac {32 \, x}{x^{2} e^{4} - 4 \, x^{2} + 20 \, x + 4 \, e^{x}}}}{x^{4} e^{8} + 16 \, x^{4} - 160 \, x^{3} + 400 \, x^{2} - 8 \, {\left (x^{4} - 5 \, x^{3}\right )} e^{4} + 8 \, {\left (x^{2} e^{4} - 4 \, x^{2} + 20 \, x\right )} e^{x} + 16 \, e^{\left (2 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.55, size = 28, normalized size = 0.93
method | result | size |
risch | \({\mathrm e}^{\frac {32 x \ln \relax (2)}{4 \,{\mathrm e}^{x}+x^{2} {\mathrm e}^{4}-4 x^{2}+20 x}}\) | \(28\) |
norman | \(\frac {\left ({\mathrm e}^{4}-4\right ) x^{2} {\mathrm e}^{\frac {32 x \ln \relax (2)}{4 \,{\mathrm e}^{x}+x^{2} {\mathrm e}^{4}-4 x^{2}+20 x}}+20 x \,{\mathrm e}^{\frac {32 x \ln \relax (2)}{4 \,{\mathrm e}^{x}+x^{2} {\mathrm e}^{4}-4 x^{2}+20 x}}+4 \,{\mathrm e}^{x} {\mathrm e}^{\frac {32 x \ln \relax (2)}{4 \,{\mathrm e}^{x}+x^{2} {\mathrm e}^{4}-4 x^{2}+20 x}}}{4 \,{\mathrm e}^{x}+x^{2} {\mathrm e}^{4}-4 x^{2}+20 x}\) | \(120\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 23, normalized size = 0.77 \begin {gather*} 2^{\frac {32 \, x}{x^{2} {\left (e^{4} - 4\right )} + 20 \, x + 4 \, e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.71, size = 27, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{\frac {32\,x\,\ln \relax (2)}{20\,x+4\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^4-4\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 27, normalized size = 0.90 \begin {gather*} e^{\frac {32 x \log {\relax (2 )}}{- 4 x^{2} + x^{2} e^{4} + 20 x + 4 e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________