Optimal. Leaf size=28 \[ -x+\frac {e^x}{3 x+\frac {1}{4} e^{-2 x} (2+x)^2} \]
________________________________________________________________________________________
Rubi [F] time = 3.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16-32 x-24 x^2-144 e^{4 x} x^2-8 x^3-x^4+e^{5 x} (-48+48 x)+e^{3 x} \left (32+40 x+12 x^2\right )+e^{2 x} \left (-96 x-96 x^2-24 x^3\right )}{16+32 x+24 x^2+144 e^{4 x} x^2+8 x^3+x^4+e^{2 x} \left (96 x+96 x^2+24 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {48 e^{5 x} (-1+x)-144 e^{4 x} x^2-24 e^{2 x} x (2+x)^2-(2+x)^4+4 e^{3 x} \left (8+10 x+3 x^2\right )}{\left (4+4 \left (1+3 e^{2 x}\right ) x+x^2\right )^2} \, dx\\ &=\int \left (-1+\frac {e^x (-1+x)}{3 x^2}-\frac {e^x (2+x)^3 \left (2+3 x+2 x^2\right )}{3 x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )^2}+\frac {e^x \left (8+8 x+4 x^2+x^3\right )}{3 x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )}\right ) \, dx\\ &=-x+\frac {1}{3} \int \frac {e^x (-1+x)}{x^2} \, dx-\frac {1}{3} \int \frac {e^x (2+x)^3 \left (2+3 x+2 x^2\right )}{x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )^2} \, dx+\frac {1}{3} \int \frac {e^x \left (8+8 x+4 x^2+x^3\right )}{x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )} \, dx\\ &=\frac {e^x}{3 x}-x-\frac {1}{3} \int \left (\frac {64 e^x}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2}+\frac {16 e^x}{x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )^2}+\frac {48 e^x}{x \left (4+4 x+12 e^{2 x} x+x^2\right )^2}+\frac {44 e^x x}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2}+\frac {15 e^x x^2}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2}+\frac {2 e^x x^3}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2}\right ) \, dx+\frac {1}{3} \int \left (\frac {4 e^x}{4+4 x+12 e^{2 x} x+x^2}+\frac {8 e^x}{x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )}+\frac {8 e^x}{x \left (4+4 x+12 e^{2 x} x+x^2\right )}+\frac {e^x x}{4+4 x+12 e^{2 x} x+x^2}\right ) \, dx\\ &=\frac {e^x}{3 x}-x+\frac {1}{3} \int \frac {e^x x}{4+4 x+12 e^{2 x} x+x^2} \, dx-\frac {2}{3} \int \frac {e^x x^3}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2} \, dx+\frac {4}{3} \int \frac {e^x}{4+4 x+12 e^{2 x} x+x^2} \, dx+\frac {8}{3} \int \frac {e^x}{x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )} \, dx+\frac {8}{3} \int \frac {e^x}{x \left (4+4 x+12 e^{2 x} x+x^2\right )} \, dx-5 \int \frac {e^x x^2}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2} \, dx-\frac {16}{3} \int \frac {e^x}{x^2 \left (4+4 x+12 e^{2 x} x+x^2\right )^2} \, dx-\frac {44}{3} \int \frac {e^x x}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2} \, dx-16 \int \frac {e^x}{x \left (4+4 x+12 e^{2 x} x+x^2\right )^2} \, dx-\frac {64}{3} \int \frac {e^x}{\left (4+4 x+12 e^{2 x} x+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.86, size = 47, normalized size = 1.68 \begin {gather*} \frac {e^x}{3 x}-x-\frac {e^x (2+x)^2}{3 x \left (4+4 x+12 e^{2 x} x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 46, normalized size = 1.64 \begin {gather*} -\frac {x^{3} + 12 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} + 4 \, x - 4 \, e^{\left (3 \, x\right )}}{x^{2} + 12 \, x e^{\left (2 \, x\right )} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 72, normalized size = 2.57 \begin {gather*} -\frac {3 \, x^{4} + 36 \, x^{3} e^{\left (2 \, x\right )} + 12 \, x^{3} + x^{2} e^{x} + 12 \, x^{2} - 12 \, x e^{\left (3 \, x\right )} + 4 \, x e^{x} + 4 \, e^{x}}{3 \, {\left (x^{3} + 12 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} + 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 44, normalized size = 1.57
method | result | size |
risch | \(-x +\frac {{\mathrm e}^{x}}{3 x}-\frac {\left (x^{2}+4 x +4\right ) {\mathrm e}^{x}}{3 x \left (12 x \,{\mathrm e}^{2 x}+x^{2}+4 x +4\right )}\) | \(44\) |
norman | \(\frac {12 x +48 x \,{\mathrm e}^{2 x}-x^{3}+4 \,{\mathrm e}^{3 x}-12 \,{\mathrm e}^{2 x} x^{2}+16}{12 x \,{\mathrm e}^{2 x}+x^{2}+4 x +4}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 46, normalized size = 1.64 \begin {gather*} -\frac {x^{3} + 12 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} + 4 \, x - 4 \, e^{\left (3 \, x\right )}}{x^{2} + 12 \, x e^{\left (2 \, x\right )} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {32\,x-{\mathrm {e}}^{3\,x}\,\left (12\,x^2+40\,x+32\right )+{\mathrm {e}}^{2\,x}\,\left (24\,x^3+96\,x^2+96\,x\right )+144\,x^2\,{\mathrm {e}}^{4\,x}-{\mathrm {e}}^{5\,x}\,\left (48\,x-48\right )+24\,x^2+8\,x^3+x^4+16}{32\,x+{\mathrm {e}}^{2\,x}\,\left (24\,x^3+96\,x^2+96\,x\right )+144\,x^2\,{\mathrm {e}}^{4\,x}+24\,x^2+8\,x^3+x^4+16} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 44, normalized size = 1.57 \begin {gather*} - x + \frac {\left (- x^{2} - 4 x - 4\right ) e^{x}}{3 x^{3} + 36 x^{2} e^{2 x} + 12 x^{2} + 12 x} + \frac {e^{x}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________