Optimal. Leaf size=22 \[ 5 e^{-x-\frac {9}{8+x^2-\log (x)}} x \]
________________________________________________________________________________________
Rubi [F] time = 11.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {9}{-8-x^2+\log (x)}} \left (275-320 x+170 x^2-80 x^3+5 x^4-5 x^5+\left (-80+80 x-10 x^2+10 x^3\right ) \log (x)+(5-5 x) \log ^2(x)\right )}{e^x \left (64+16 x^2+x^4\right )+e^x \left (-16-2 x^2\right ) \log (x)+e^x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x+\frac {9}{-8-x^2+\log (x)}} \left (275-320 x+170 x^2-80 x^3+5 x^4-5 x^5+\left (-80+80 x-10 x^2+10 x^3\right ) \log (x)+(5-5 x) \log ^2(x)\right )}{\left (8+x^2-\log (x)\right )^2} \, dx\\ &=\int \left (-5 e^{-x+\frac {9}{-8-x^2+\log (x)}} (-1+x)+\frac {45 e^{-x+\frac {9}{-8-x^2+\log (x)}} \left (-1+2 x^2\right )}{\left (8+x^2-\log (x)\right )^2}\right ) \, dx\\ &=-\left (5 \int e^{-x+\frac {9}{-8-x^2+\log (x)}} (-1+x) \, dx\right )+45 \int \frac {e^{-x+\frac {9}{-8-x^2+\log (x)}} \left (-1+2 x^2\right )}{\left (8+x^2-\log (x)\right )^2} \, dx\\ &=-\left (5 \int \left (-e^{-x+\frac {9}{-8-x^2+\log (x)}}+e^{-x+\frac {9}{-8-x^2+\log (x)}} x\right ) \, dx\right )+45 \int \left (-\frac {e^{-x+\frac {9}{-8-x^2+\log (x)}}}{\left (8+x^2-\log (x)\right )^2}+\frac {2 e^{-x+\frac {9}{-8-x^2+\log (x)}} x^2}{\left (8+x^2-\log (x)\right )^2}\right ) \, dx\\ &=5 \int e^{-x+\frac {9}{-8-x^2+\log (x)}} \, dx-5 \int e^{-x+\frac {9}{-8-x^2+\log (x)}} x \, dx-45 \int \frac {e^{-x+\frac {9}{-8-x^2+\log (x)}}}{\left (8+x^2-\log (x)\right )^2} \, dx+90 \int \frac {e^{-x+\frac {9}{-8-x^2+\log (x)}} x^2}{\left (8+x^2-\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.27, size = 22, normalized size = 1.00 \begin {gather*} 5 e^{-x+\frac {9}{-8-x^2+\log (x)}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 21, normalized size = 0.95 \begin {gather*} 5 \, x e^{\left (-x - \frac {9}{x^{2} - \log \relax (x) + 8}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 42, normalized size = 1.91 \begin {gather*} 5 \, x e^{\left (-\frac {8 \, x^{3} - 9 \, x^{2} - 8 \, x \log \relax (x) + 64 \, x + 9 \, \log \relax (x)}{8 \, {\left (x^{2} - \log \relax (x) + 8\right )}} - \frac {9}{8}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.45
method | result | size |
risch | \(5 x \,{\mathrm e}^{-\frac {-x^{3}+x \ln \relax (x )-8 x -9}{\ln \relax (x )-x^{2}-8}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 21, normalized size = 0.95 \begin {gather*} 5 \, x e^{\left (-x - \frac {9}{x^{2} - \log \relax (x) + 8}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {{\mathrm {e}}^{-\frac {9}{x^2-\ln \relax (x)+8}}\,\left (320\,x-170\,x^2+80\,x^3-5\,x^4+5\,x^5+{\ln \relax (x)}^2\,\left (5\,x-5\right )-\ln \relax (x)\,\left (10\,x^3-10\,x^2+80\,x-80\right )-275\right )}{{\mathrm {e}}^x\,{\ln \relax (x)}^2-{\mathrm {e}}^x\,\left (2\,x^2+16\right )\,\ln \relax (x)+{\mathrm {e}}^x\,\left (x^4+16\,x^2+64\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 17, normalized size = 0.77 \begin {gather*} 5 x e^{- x} e^{\frac {9}{- x^{2} + \log {\relax (x )} - 8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________