Optimal. Leaf size=27 \[ 1+x \left (-e^3+\frac {12 e^{2 x} \left (e^{2 x}+x\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 33, normalized size of antiderivative = 1.22, number of steps used = 5, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {6688, 2194, 2176} \begin {gather*} -e^3 x-6 e^{2 x}+12 e^{4 x}+6 e^{2 x} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^3+48 e^{4 x}+12 e^{2 x} (1+2 x)\right ) \, dx\\ &=-e^3 x+12 \int e^{2 x} (1+2 x) \, dx+48 \int e^{4 x} \, dx\\ &=12 e^{4 x}-e^3 x+6 e^{2 x} (1+2 x)-12 \int e^{2 x} \, dx\\ &=-6 e^{2 x}+12 e^{4 x}-e^3 x+6 e^{2 x} (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 0.81 \begin {gather*} 12 e^{4 x}-e^3 x+12 e^{2 x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 26, normalized size = 0.96 \begin {gather*} -{\left (x e^{9} - 12 \, x e^{\left (2 \, x + 6\right )} - 12 \, e^{\left (4 \, x + 6\right )}\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.00, size = 19, normalized size = 0.70 \begin {gather*} -x e^{3} + 12 \, x e^{\left (2 \, x\right )} + 12 \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 20, normalized size = 0.74
method | result | size |
norman | \(12 \,{\mathrm e}^{4 x}-x \,{\mathrm e}^{3}+12 x \,{\mathrm e}^{2 x}\) | \(20\) |
risch | \(12 \,{\mathrm e}^{4 x}-x \,{\mathrm e}^{3}+12 x \,{\mathrm e}^{2 x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 19, normalized size = 0.70 \begin {gather*} -x e^{3} + 12 \, x e^{\left (2 \, x\right )} + 12 \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.59, size = 19, normalized size = 0.70 \begin {gather*} 12\,{\mathrm {e}}^{4\,x}+12\,x\,{\mathrm {e}}^{2\,x}-x\,{\mathrm {e}}^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.70 \begin {gather*} 12 x e^{2 x} - x e^{3} + 12 e^{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________