Optimal. Leaf size=36 \[ \left (1+e^{\frac {1}{5} x^2 \left (-x+\frac {e^5}{3 \log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )}+x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 16.32, antiderivative size = 314, normalized size of antiderivative = 8.72, number of steps used = 6, number of rules used = 5, integrand size = 301, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6741, 6742, 6688, 6706, 2288} \begin {gather*} e^{-\frac {2}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (\frac {x}{4}+5\right )\right )}\right )}+\frac {2 e^{-\frac {1}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (\frac {x}{4}+5\right )\right )}\right )} \left (9 x^4 \log \left (\frac {x}{4}+5\right ) \log ^2\left (\log \left (\frac {x}{4}+5\right )\right )+e^5 x^3+189 x^3 \log \left (\frac {x}{4}+5\right ) \log ^2\left (\log \left (\frac {x}{4}+5\right )\right )-2 e^5 x^3 \log \left (\frac {x}{4}+5\right ) \log \left (\log \left (\frac {x}{4}+5\right )\right )+e^5 x^2+180 x^2 \log \left (\frac {x}{4}+5\right ) \log ^2\left (\log \left (\frac {x}{4}+5\right )\right )-42 e^5 x^2 \log \left (\frac {x}{4}+5\right ) \log \left (\log \left (\frac {x}{4}+5\right )\right )-40 e^5 x \log \left (\frac {x}{4}+5\right ) \log \left (\log \left (\frac {x}{4}+5\right )\right )\right )}{(x+20) \log \left (\frac {x}{4}+5\right ) \left (x^2 \left (\frac {e^5}{(x+20) \log ^2\left (\log \left (\frac {x}{4}+5\right )\right ) \log \left (\frac {x}{4}+5\right )}+3\right )+2 x \left (3 x-\frac {e^5}{\log \left (\log \left (\frac {x}{4}+5\right )\right )}\right )\right ) \log ^2\left (\log \left (\frac {x}{4}+5\right )\right )}+(x+1)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rule 6706
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (600+630 x+30 x^2\right ) \log \left (\frac {20+x}{4}\right ) \log ^2\left (\log \left (\frac {20+x}{4}\right )\right )+\exp \left (\frac {2 \left (e^5 x^2-3 x^3 \log \left (\log \left (\frac {20+x}{4}\right )\right )\right )}{15 \log \left (\log \left (\frac {20+x}{4}\right )\right )}\right ) \left (-2 e^5 x^2+e^5 \left (80 x+4 x^2\right ) \log \left (\frac {20+x}{4}\right ) \log \left (\log \left (\frac {20+x}{4}\right )\right )+\left (-360 x^2-18 x^3\right ) \log \left (\frac {20+x}{4}\right ) \log ^2\left (\log \left (\frac {20+x}{4}\right )\right )\right )+\exp \left (\frac {e^5 x^2-3 x^3 \log \left (\log \left (\frac {20+x}{4}\right )\right )}{15 \log \left (\log \left (\frac {20+x}{4}\right )\right )}\right ) \left (e^5 \left (-2 x^2-2 x^3\right )+e^5 \left (80 x+84 x^2+4 x^3\right ) \log \left (\frac {20+x}{4}\right ) \log \left (\log \left (\frac {20+x}{4}\right )\right )+\left (600+30 x-360 x^2-378 x^3-18 x^4\right ) \log \left (\frac {20+x}{4}\right ) \log ^2\left (\log \left (\frac {20+x}{4}\right )\right )\right )}{(300+15 x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )} \, dx\\ &=\int \left (2 (1+x)-\frac {2 e^{-\frac {2}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} x \left (e^5 x-40 e^5 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-2 e^5 x \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )+180 x \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+9 x^2 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )\right )}{15 (20+x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )}-\frac {2 e^{-\frac {1}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} \left (e^5 x^2+e^5 x^3-40 e^5 x \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-42 e^5 x^2 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-2 e^5 x^3 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-300 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )-15 x \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+180 x^2 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+189 x^3 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+9 x^4 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )\right )}{15 (20+x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )}\right ) \, dx\\ &=(1+x)^2-\frac {2}{15} \int \frac {e^{-\frac {2}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} x \left (e^5 x-40 e^5 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-2 e^5 x \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )+180 x \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+9 x^2 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )\right )}{(20+x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )} \, dx-\frac {2}{15} \int \frac {e^{-\frac {1}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} \left (e^5 x^2+e^5 x^3-40 e^5 x \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-42 e^5 x^2 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-2 e^5 x^3 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-300 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )-15 x \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+180 x^2 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+189 x^3 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+9 x^4 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )\right )}{(20+x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )} \, dx\\ &=(1+x)^2+\frac {2 e^{-\frac {1}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} \left (e^5 x^2+e^5 x^3-40 e^5 x \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-42 e^5 x^2 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-2 e^5 x^3 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )+180 x^2 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+189 x^3 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+9 x^4 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )\right )}{(20+x) \log \left (5+\frac {x}{4}\right ) \left (x^2 \left (3+\frac {e^5}{(20+x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )}\right )+2 x \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )}-\frac {2}{15} \int \frac {e^{-\frac {2}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} x \left (e^5 x+(20+x) \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right ) \left (-2 e^5+9 x \log \left (\log \left (5+\frac {x}{4}\right )\right )\right )\right )}{(20+x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )} \, dx\\ &=e^{-\frac {2}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )}+(1+x)^2+\frac {2 e^{-\frac {1}{15} x^2 \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} \left (e^5 x^2+e^5 x^3-40 e^5 x \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-42 e^5 x^2 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )-2 e^5 x^3 \log \left (5+\frac {x}{4}\right ) \log \left (\log \left (5+\frac {x}{4}\right )\right )+180 x^2 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+189 x^3 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )+9 x^4 \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )\right )}{(20+x) \log \left (5+\frac {x}{4}\right ) \left (x^2 \left (3+\frac {e^5}{(20+x) \log \left (5+\frac {x}{4}\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )}\right )+2 x \left (3 x-\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )\right ) \log ^2\left (\log \left (5+\frac {x}{4}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.37, size = 81, normalized size = 2.25 \begin {gather*} e^{-\frac {2 x^3}{5}} \left (e^{\frac {2 e^5 x^2}{15 \log \left (\log \left (5+\frac {x}{4}\right )\right )}}+2 e^{\frac {1}{15} x^2 \left (3 x+\frac {e^5}{\log \left (\log \left (5+\frac {x}{4}\right )\right )}\right )} (1+x)+e^{\frac {2 x^3}{5}} x (2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 76, normalized size = 2.11 \begin {gather*} x^{2} + 2 \, {\left (x + 1\right )} e^{\left (-\frac {3 \, x^{3} \log \left (\log \left (\frac {1}{4} \, x + 5\right )\right ) - x^{2} e^{5}}{15 \, \log \left (\log \left (\frac {1}{4} \, x + 5\right )\right )}\right )} + 2 \, x + e^{\left (-\frac {2 \, {\left (3 \, x^{3} \log \left (\log \left (\frac {1}{4} \, x + 5\right )\right ) - x^{2} e^{5}\right )}}{15 \, \log \left (\log \left (\frac {1}{4} \, x + 5\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.39, size = 70, normalized size = 1.94
method | result | size |
risch | \(x^{2}+{\mathrm e}^{\frac {2 x^{2} \left (-3 \ln \left (\ln \left (5+\frac {x}{4}\right )\right ) x +{\mathrm e}^{5}\right )}{15 \ln \left (\ln \left (5+\frac {x}{4}\right )\right )}}+2 x +\left (2 x +2\right ) {\mathrm e}^{\frac {x^{2} \left (-3 \ln \left (\ln \left (5+\frac {x}{4}\right )\right ) x +{\mathrm e}^{5}\right )}{15 \ln \left (\ln \left (5+\frac {x}{4}\right )\right )}}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 81, normalized size = 2.25 \begin {gather*} 2\,x+2\,{\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^5}{15\,\ln \left (\ln \left (\frac {x}{4}+5\right )\right )}-\frac {x^3}{5}}+{\mathrm {e}}^{\frac {2\,x^2\,{\mathrm {e}}^5}{15\,\ln \left (\ln \left (\frac {x}{4}+5\right )\right )}-\frac {2\,x^3}{5}}+x^2+2\,x\,{\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^5}{15\,\ln \left (\ln \left (\frac {x}{4}+5\right )\right )}-\frac {x^3}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.27, size = 78, normalized size = 2.17 \begin {gather*} x^{2} + 2 x + \left (2 x + 2\right ) e^{\frac {- \frac {x^{3} \log {\left (\log {\left (\frac {x}{4} + 5 \right )} \right )}}{5} + \frac {x^{2} e^{5}}{15}}{\log {\left (\log {\left (\frac {x}{4} + 5 \right )} \right )}}} + e^{\frac {2 \left (- \frac {x^{3} \log {\left (\log {\left (\frac {x}{4} + 5 \right )} \right )}}{5} + \frac {x^{2} e^{5}}{15}\right )}{\log {\left (\log {\left (\frac {x}{4} + 5 \right )} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________