Optimal. Leaf size=28 \[ \frac {\left (2+\log \left (\frac {\log (4) \left (x+\frac {1}{3} (x-\log (x))\right )}{x}\right )\right )^2}{\log ^8(5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 4, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2561, 6741, 12, 6686} \begin {gather*} \frac {\left (\log \left (\frac {\log (4) (4 x-\log (x))}{3 x}\right )+2\right )^2}{\log ^8(5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2561
Rule 6686
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4-4 \log (x)+(2-2 \log (x)) \log \left (\frac {4 x \log (4)-\log (4) \log (x)}{3 x}\right )}{x \left (-4 x \log ^8(5)+\log ^8(5) \log (x)\right )} \, dx\\ &=\int \frac {2 (1-\log (x)) \left (-2-\log \left (\frac {\log (4) (4 x-\log (x))}{3 x}\right )\right )}{x \log ^8(5) (4 x-\log (x))} \, dx\\ &=\frac {2 \int \frac {(1-\log (x)) \left (-2-\log \left (\frac {\log (4) (4 x-\log (x))}{3 x}\right )\right )}{x (4 x-\log (x))} \, dx}{\log ^8(5)}\\ &=\frac {\left (2+\log \left (\frac {\log (4) (4 x-\log (x))}{3 x}\right )\right )^2}{\log ^8(5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 27, normalized size = 0.96 \begin {gather*} \frac {\left (2+\log \left (\frac {\log (4) (4 x-\log (x))}{3 x}\right )\right )^2}{\log ^8(5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 46, normalized size = 1.64 \begin {gather*} \frac {\log \left (\frac {2 \, {\left (4 \, x \log \relax (2) - \log \relax (2) \log \relax (x)\right )}}{3 \, x}\right )^{2} + 4 \, \log \left (\frac {2 \, {\left (4 \, x \log \relax (2) - \log \relax (2) \log \relax (x)\right )}}{3 \, x}\right )}{\log \relax (5)^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 88, normalized size = 3.14 \begin {gather*} \frac {\log \left (4 \, x \log \relax (2) - \log \relax (2) \log \relax (x)\right )^{2}}{\log \relax (5)^{8}} + \frac {2 \, {\left (\log \relax (3) - \log \relax (2) - 2\right )} \log \relax (x)}{\log \relax (5)^{8}} - \frac {2 \, \log \left (4 \, x \log \relax (2) - \log \relax (2) \log \relax (x)\right ) \log \relax (x)}{\log \relax (5)^{8}} + \frac {\log \relax (x)^{2}}{\log \relax (5)^{8}} - \frac {2 \, {\left (\log \relax (3) - \log \relax (2) - 2\right )} \log \left (-4 \, x + \log \relax (x)\right )}{\log \relax (5)^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.47, size = 56, normalized size = 2.00
method | result | size |
norman | \(\frac {\frac {4 \ln \left (\frac {-2 \ln \relax (2) \ln \relax (x )+8 x \ln \relax (2)}{3 x}\right )}{\ln \relax (5)}+\frac {\ln \left (\frac {-2 \ln \relax (2) \ln \relax (x )+8 x \ln \relax (2)}{3 x}\right )^{2}}{\ln \relax (5)}}{\ln \relax (5)^{7}}\) | \(56\) |
default | \(-\frac {4 \ln \relax (x )}{\ln \relax (5)^{8}}+\frac {4 \ln \left (4 x -\ln \relax (x )\right )}{\ln \relax (5)^{8}}+\frac {\ln \left (\frac {4 x -\ln \relax (x )}{x}\right )^{2}}{\ln \relax (5)^{8}}-\frac {2 \ln \left (\ln \relax (2)\right ) \ln \relax (x )}{\ln \relax (5)^{8}}+\frac {2 \ln \left (\ln \relax (2)\right ) \ln \left (4 x -\ln \relax (x )\right )}{\ln \relax (5)^{8}}-\frac {2 \ln \relax (2) \ln \relax (x )}{\ln \relax (5)^{8}}+\frac {2 \ln \relax (2) \ln \left (4 x -\ln \relax (x )\right )}{\ln \relax (5)^{8}}+\frac {2 \ln \relax (3) \ln \relax (x )}{\ln \relax (5)^{8}}-\frac {2 \ln \relax (3) \ln \left (4 x -\ln \relax (x )\right )}{\ln \relax (5)^{8}}\) | \(128\) |
risch | \(\frac {\ln \left (x -\frac {\ln \relax (x )}{4}\right )^{2}}{\ln \relax (5)^{8}}-\frac {2 \ln \relax (x ) \ln \left (x -\frac {\ln \relax (x )}{4}\right )}{\ln \relax (5)^{8}}+\frac {i \pi \ln \left (-4 x +\ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )^{2}}{\ln \relax (5)^{8}}+\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-x +\frac {\ln \relax (x )}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )}{\ln \relax (5)^{8}}-\frac {i \pi \ln \left (-4 x +\ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-x +\frac {\ln \relax (x )}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )}{\ln \relax (5)^{8}}-\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )^{3}}{\ln \relax (5)^{8}}-\frac {i \pi \ln \left (-4 x +\ln \relax (x )\right ) \mathrm {csgn}\left (i \left (-x +\frac {\ln \relax (x )}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )^{2}}{\ln \relax (5)^{8}}+\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (-x +\frac {\ln \relax (x )}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )^{2}}{\ln \relax (5)^{8}}-\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )^{2}}{\ln \relax (5)^{8}}+\frac {i \pi \ln \left (-4 x +\ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \left (-x +\frac {\ln \relax (x )}{4}\right )}{x}\right )^{3}}{\ln \relax (5)^{8}}+\frac {\ln \relax (x )^{2}}{\ln \relax (5)^{8}}+\frac {2 \ln \relax (3) \ln \relax (x )}{\ln \relax (5)^{8}}-\frac {6 \ln \relax (2) \ln \relax (x )}{\ln \relax (5)^{8}}-\frac {2 \ln \left (\ln \relax (2)\right ) \ln \relax (x )}{\ln \relax (5)^{8}}-\frac {2 \ln \relax (3) \ln \left (-4 x +\ln \relax (x )\right )}{\ln \relax (5)^{8}}+\frac {6 \ln \relax (2) \ln \left (-4 x +\ln \relax (x )\right )}{\ln \relax (5)^{8}}+\frac {2 \ln \left (-4 x +\ln \relax (x )\right ) \ln \left (\ln \relax (2)\right )}{\ln \relax (5)^{8}}-\frac {4 \ln \relax (x )}{\ln \relax (5)^{8}}+\frac {4 \ln \left (-4 x +\ln \relax (x )\right )}{\ln \relax (5)^{8}}\) | \(446\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 69, normalized size = 2.46 \begin {gather*} -\frac {2 \, {\left (i \, \pi - \log \relax (3) + \log \relax (2) + \log \left (\log \relax (2)\right ) + 2\right )} \log \relax (x) - \log \relax (x)^{2} + 2 \, {\left (-i \, \pi + \log \relax (3) - \log \relax (2) + \log \relax (x) - \log \left (\log \relax (2)\right ) - 2\right )} \log \left (-4 \, x + \log \relax (x)\right ) - \log \left (-4 \, x + \log \relax (x)\right )^{2}}{\log \relax (5)^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.86, size = 38, normalized size = 1.36 \begin {gather*} \frac {{\ln \left (\frac {\frac {8\,x\,\ln \relax (2)}{3}-\frac {2\,\ln \relax (2)\,\ln \relax (x)}{3}}{x}\right )}^2+4\,\ln \left (\ln \relax (x)-4\,x\right )-4\,\ln \relax (x)}{{\ln \relax (5)}^8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 53, normalized size = 1.89 \begin {gather*} - \frac {4 \log {\relax (x )}}{\log {\relax (5 )}^{8}} + \frac {\log {\left (\frac {\frac {8 x \log {\relax (2 )}}{3} - \frac {2 \log {\relax (2 )} \log {\relax (x )}}{3}}{x} \right )}^{2}}{\log {\relax (5 )}^{8}} + \frac {4 \log {\left (- 4 x + \log {\relax (x )} \right )}}{\log {\relax (5 )}^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________