Optimal. Leaf size=28 \[ \frac {1}{2} \left (\frac {2 e^x}{x}-\frac {\log (3)}{1-2 x \log ^4(x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.84, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 5, number of rules used = 4, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6741, 6742, 2197, 6686} \begin {gather*} \frac {e^x}{x}-\frac {\log (3)}{2 \left (1-2 x \log ^4(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2197
Rule 6686
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (-1+x)-4 x^2 \log (3) \log ^3(x)+\left (e^x \left (4 x-4 x^2\right )-x^2 \log (3)\right ) \log ^4(x)+e^x \left (-4 x^2+4 x^3\right ) \log ^8(x)}{x^2 \left (1-2 x \log ^4(x)\right )^2} \, dx\\ &=\int \left (\frac {e^x (-1+x)}{x^2}-\frac {\log (3) \log ^3(x) (4+\log (x))}{\left (-1+2 x \log ^4(x)\right )^2}\right ) \, dx\\ &=-\left (\log (3) \int \frac {\log ^3(x) (4+\log (x))}{\left (-1+2 x \log ^4(x)\right )^2} \, dx\right )+\int \frac {e^x (-1+x)}{x^2} \, dx\\ &=\frac {e^x}{x}-\frac {\log (3)}{2 \left (1-2 x \log ^4(x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 22, normalized size = 0.79 \begin {gather*} \frac {e^x}{x}+\frac {\log (3)}{-2+4 x \log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 35, normalized size = 1.25 \begin {gather*} \frac {4 \, x e^{x} \log \relax (x)^{4} + x \log \relax (3) - 2 \, e^{x}}{2 \, {\left (2 \, x^{2} \log \relax (x)^{4} - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 35, normalized size = 1.25 \begin {gather*} \frac {4 \, x e^{x} \log \relax (x)^{4} + x \log \relax (3) - 2 \, e^{x}}{2 \, {\left (2 \, x^{2} \log \relax (x)^{4} - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.82
method | result | size |
risch | \(\frac {{\mathrm e}^{x}}{x}+\frac {\ln \relax (3)}{4 x \ln \relax (x )^{4}-2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 35, normalized size = 1.25 \begin {gather*} \frac {2 \, {\left (2 \, x \log \relax (x)^{4} - 1\right )} e^{x} + x \log \relax (3)}{2 \, {\left (2 \, x^{2} \log \relax (x)^{4} - x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.56, size = 21, normalized size = 0.75 \begin {gather*} \frac {{\mathrm {e}}^x}{x}+\frac {\ln \relax (3)}{2\,\left (2\,x\,{\ln \relax (x)}^4-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 17, normalized size = 0.61 \begin {gather*} \frac {\log {\relax (3 )}}{4 x \log {\relax (x )}^{4} - 2} + \frac {e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________