Optimal. Leaf size=24 \[ \frac {25 x^2 \log ^2(3+x)}{144 (5-x)^2 \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-250 x^2+50 x^3\right ) \log (x) \log (3+x)+\left (375 x+50 x^2-25 x^3+\left (-750 x-250 x^2\right ) \log (x)\right ) \log ^2(3+x)}{\left (-54000+14400 x+4320 x^2-1728 x^3+144 x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 x \log (3+x) \left (\left (-15-2 x+x^2\right ) \log (3+x)-2 \log (x) ((-5+x) x-5 (3+x) \log (3+x))\right )}{144 (5-x)^3 (3+x) \log ^2(x)} \, dx\\ &=\frac {25}{144} \int \frac {x \log (3+x) \left (\left (-15-2 x+x^2\right ) \log (3+x)-2 \log (x) ((-5+x) x-5 (3+x) \log (3+x))\right )}{(5-x)^3 (3+x) \log ^2(x)} \, dx\\ &=\frac {25}{144} \int \left (\frac {2 x^2 \log (3+x)}{(-5+x)^2 (3+x) \log (x)}-\frac {x (-5+x+10 \log (x)) \log ^2(3+x)}{(-5+x)^3 \log ^2(x)}\right ) \, dx\\ &=-\left (\frac {25}{144} \int \frac {x (-5+x+10 \log (x)) \log ^2(3+x)}{(-5+x)^3 \log ^2(x)} \, dx\right )+\frac {25}{72} \int \frac {x^2 \log (3+x)}{(-5+x)^2 (3+x) \log (x)} \, dx\\ &=-\left (\frac {25}{144} \int \left (\frac {5 (-5+x+10 \log (x)) \log ^2(3+x)}{(-5+x)^3 \log ^2(x)}+\frac {(-5+x+10 \log (x)) \log ^2(3+x)}{(-5+x)^2 \log ^2(x)}\right ) \, dx\right )+\frac {25}{72} \int \left (\frac {25 \log (3+x)}{8 (-5+x)^2 \log (x)}+\frac {55 \log (3+x)}{64 (-5+x) \log (x)}+\frac {9 \log (3+x)}{64 (3+x) \log (x)}\right ) \, dx\\ &=\frac {25}{512} \int \frac {\log (3+x)}{(3+x) \log (x)} \, dx-\frac {25}{144} \int \frac {(-5+x+10 \log (x)) \log ^2(3+x)}{(-5+x)^2 \log ^2(x)} \, dx+\frac {1375 \int \frac {\log (3+x)}{(-5+x) \log (x)} \, dx}{4608}-\frac {125}{144} \int \frac {(-5+x+10 \log (x)) \log ^2(3+x)}{(-5+x)^3 \log ^2(x)} \, dx+\frac {625}{576} \int \frac {\log (3+x)}{(-5+x)^2 \log (x)} \, dx\\ &=\frac {25}{512} \int \frac {\log (3+x)}{(3+x) \log (x)} \, dx-\frac {25}{144} \int \left (-\frac {5 \log ^2(3+x)}{(-5+x)^2 \log ^2(x)}+\frac {x \log ^2(3+x)}{(-5+x)^2 \log ^2(x)}+\frac {10 \log ^2(3+x)}{(-5+x)^2 \log (x)}\right ) \, dx+\frac {1375 \int \frac {\log (3+x)}{(-5+x) \log (x)} \, dx}{4608}-\frac {125}{144} \int \left (-\frac {5 \log ^2(3+x)}{(-5+x)^3 \log ^2(x)}+\frac {x \log ^2(3+x)}{(-5+x)^3 \log ^2(x)}+\frac {10 \log ^2(3+x)}{(-5+x)^3 \log (x)}\right ) \, dx+\frac {625}{576} \int \frac {\log (3+x)}{(-5+x)^2 \log (x)} \, dx\\ &=\frac {25}{512} \int \frac {\log (3+x)}{(3+x) \log (x)} \, dx-\frac {25}{144} \int \frac {x \log ^2(3+x)}{(-5+x)^2 \log ^2(x)} \, dx+\frac {1375 \int \frac {\log (3+x)}{(-5+x) \log (x)} \, dx}{4608}+\frac {125}{144} \int \frac {\log ^2(3+x)}{(-5+x)^2 \log ^2(x)} \, dx-\frac {125}{144} \int \frac {x \log ^2(3+x)}{(-5+x)^3 \log ^2(x)} \, dx+\frac {625}{576} \int \frac {\log (3+x)}{(-5+x)^2 \log (x)} \, dx-\frac {125}{72} \int \frac {\log ^2(3+x)}{(-5+x)^2 \log (x)} \, dx+\frac {625}{144} \int \frac {\log ^2(3+x)}{(-5+x)^3 \log ^2(x)} \, dx-\frac {625}{72} \int \frac {\log ^2(3+x)}{(-5+x)^3 \log (x)} \, dx\\ &=\frac {25}{512} \int \frac {\log (3+x)}{(3+x) \log (x)} \, dx-\frac {25}{144} \int \left (\frac {5 \log ^2(3+x)}{(-5+x)^2 \log ^2(x)}+\frac {\log ^2(3+x)}{(-5+x) \log ^2(x)}\right ) \, dx+\frac {1375 \int \frac {\log (3+x)}{(-5+x) \log (x)} \, dx}{4608}+\frac {125}{144} \int \frac {\log ^2(3+x)}{(-5+x)^2 \log ^2(x)} \, dx-\frac {125}{144} \int \left (\frac {5 \log ^2(3+x)}{(-5+x)^3 \log ^2(x)}+\frac {\log ^2(3+x)}{(-5+x)^2 \log ^2(x)}\right ) \, dx+\frac {625}{576} \int \frac {\log (3+x)}{(-5+x)^2 \log (x)} \, dx-\frac {125}{72} \int \frac {\log ^2(3+x)}{(-5+x)^2 \log (x)} \, dx+\frac {625}{144} \int \frac {\log ^2(3+x)}{(-5+x)^3 \log ^2(x)} \, dx-\frac {625}{72} \int \frac {\log ^2(3+x)}{(-5+x)^3 \log (x)} \, dx\\ &=\frac {25}{512} \int \frac {\log (3+x)}{(3+x) \log (x)} \, dx-\frac {25}{144} \int \frac {\log ^2(3+x)}{(-5+x) \log ^2(x)} \, dx+\frac {1375 \int \frac {\log (3+x)}{(-5+x) \log (x)} \, dx}{4608}-\frac {125}{144} \int \frac {\log ^2(3+x)}{(-5+x)^2 \log ^2(x)} \, dx+\frac {625}{576} \int \frac {\log (3+x)}{(-5+x)^2 \log (x)} \, dx-\frac {125}{72} \int \frac {\log ^2(3+x)}{(-5+x)^2 \log (x)} \, dx-\frac {625}{72} \int \frac {\log ^2(3+x)}{(-5+x)^3 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 22, normalized size = 0.92 \begin {gather*} \frac {25 x^2 \log ^2(3+x)}{144 (-5+x)^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 25, normalized size = 1.04 \begin {gather*} \frac {25 \, x^{2} \log \left (x + 3\right )^{2}}{144 \, {\left (x^{2} - 10 \, x + 25\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 29, normalized size = 1.21 \begin {gather*} \frac {25 \, x^{2} \log \left (x + 3\right )^{2}}{144 \, {\left (x^{2} \log \relax (x) - 10 \, x \log \relax (x) + 25 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 1.08
method | result | size |
risch | \(\frac {25 x^{2} \ln \left (3+x \right )^{2}}{144 \left (x^{2}-10 x +25\right ) \ln \relax (x )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 25, normalized size = 1.04 \begin {gather*} \frac {25 \, x^{2} \log \left (x + 3\right )^{2}}{144 \, {\left (x^{2} - 10 \, x + 25\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.68, size = 20, normalized size = 0.83 \begin {gather*} \frac {25\,x^2\,{\ln \left (x+3\right )}^2}{144\,\ln \relax (x)\,{\left (x-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 31, normalized size = 1.29 \begin {gather*} \frac {25 x^{2} \log {\left (x + 3 \right )}^{2}}{144 x^{2} \log {\relax (x )} - 1440 x \log {\relax (x )} + 3600 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________