Optimal. Leaf size=21 \[ \log (x)+\frac {4}{\log \left (\frac {(-16-e+\log (3))^2}{x^3}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 1, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {14} \begin {gather*} \frac {4}{\log \left (\frac {(16+e-\log (3))^2}{x^3}\right )}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\frac {1}{3} \operatorname {Subst}\left (\int \frac {12+x^2}{x^2} \, dx,x,\log \left (\frac {256+32 e+e^2+(-32-2 e) \log (3)+\log ^2(3)}{x^3}\right )\right )\right )\\ &=-\left (\frac {1}{3} \operatorname {Subst}\left (\int \left (1+\frac {12}{x^2}\right ) \, dx,x,\log \left (\frac {256+32 e+e^2+(-32-2 e) \log (3)+\log ^2(3)}{x^3}\right )\right )\right )\\ &=\log (x)+\frac {4}{\log \left (\frac {(16+e-\log (3))^2}{x^3}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.00 \begin {gather*} \log (x)+\frac {4}{\log \left (\frac {(16+e-\log (3))^2}{x^3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 68, normalized size = 3.24 \begin {gather*} -\frac {\log \left (-\frac {2 \, {\left (e + 16\right )} \log \relax (3) - \log \relax (3)^{2} - e^{2} - 32 \, e - 256}{x^{3}}\right )^{2} - 12}{3 \, \log \left (-\frac {2 \, {\left (e + 16\right )} \log \relax (3) - \log \relax (3)^{2} - e^{2} - 32 \, e - 256}{x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 69, normalized size = 3.29 \begin {gather*} \frac {\log \left (x^{3}\right ) \log \relax (x) - \log \left (-2 \, e \log \relax (3) + \log \relax (3)^{2} + e^{2} + 32 \, e - 32 \, \log \relax (3) + 256\right ) \log \relax (x) - 4}{\log \left (x^{3}\right ) - \log \left (-2 \, e \log \relax (3) + \log \relax (3)^{2} + e^{2} + 32 \, e - 32 \, \log \relax (3) + 256\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.62
method | result | size |
risch | \(\frac {4}{\ln \left (\frac {\ln \relax (3)^{2}+\left (-2 \,{\mathrm e}-32\right ) \ln \relax (3)+{\mathrm e}^{2}+32 \,{\mathrm e}+256}{x^{3}}\right )}+\ln \relax (x )\) | \(34\) |
norman | \(\frac {4}{\ln \left (\frac {\ln \relax (3)^{2}+\left (-2 \,{\mathrm e}-32\right ) \ln \relax (3)+{\mathrm e}^{2}+32 \,{\mathrm e}+256}{x^{3}}\right )}+\ln \relax (x )\) | \(36\) |
derivativedivides | \(-\frac {\ln \left (\frac {\ln \relax (3)^{2}+\left (-2 \,{\mathrm e}-32\right ) \ln \relax (3)+{\mathrm e}^{2}+32 \,{\mathrm e}+256}{x^{3}}\right )}{3}+\frac {4}{\ln \left (\frac {\ln \relax (3)^{2}+\left (-2 \,{\mathrm e}-32\right ) \ln \relax (3)+{\mathrm e}^{2}+32 \,{\mathrm e}+256}{x^{3}}\right )}\) | \(64\) |
default | \(-\frac {\ln \left (\frac {\ln \relax (3)^{2}+\left (-2 \,{\mathrm e}-32\right ) \ln \relax (3)+{\mathrm e}^{2}+32 \,{\mathrm e}+256}{x^{3}}\right )}{3}+\frac {4}{\ln \left (\frac {\ln \relax (3)^{2}+\left (-2 \,{\mathrm e}-32\right ) \ln \relax (3)+{\mathrm e}^{2}+32 \,{\mathrm e}+256}{x^{3}}\right )}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 23, normalized size = 1.10 \begin {gather*} -\frac {4}{3 \, \log \relax (x) - 2 \, \log \left (-e + \log \relax (3) - 16\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.72, size = 39, normalized size = 1.86 \begin {gather*} \frac {4}{\ln \left (\frac {1}{x^3}\right )+\ln \left (32\,\mathrm {e}+{\mathrm {e}}^2-32\,\ln \relax (3)-2\,\mathrm {e}\,\ln \relax (3)+{\ln \relax (3)}^2+256\right )}-\frac {\ln \left (\frac {1}{x^3}\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 36, normalized size = 1.71 \begin {gather*} \log {\relax (x )} + \frac {4}{\log {\left (\frac {\left (-32 - 2 e\right ) \log {\relax (3 )} + \log {\relax (3 )}^{2} + e^{2} + 32 e + 256}{x^{3}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________