Optimal. Leaf size=12 \[ 4 \log ^2\left (261+4 e^x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {12, 2282, 2390, 2301} \begin {gather*} 4 \log ^2\left (4 e^x+261\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2282
Rule 2301
Rule 2390
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=32 \int \frac {e^x \log \left (261+4 e^x\right )}{261+4 e^x} \, dx\\ &=32 \operatorname {Subst}\left (\int \frac {\log (261+4 x)}{261+4 x} \, dx,x,e^x\right )\\ &=8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,261+4 e^x\right )\\ &=4 \log ^2\left (261+4 e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 1.00 \begin {gather*} 4 \log ^2\left (261+4 e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 11, normalized size = 0.92 \begin {gather*} 4 \, \log \left (4 \, e^{x} + 261\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 11, normalized size = 0.92 \begin {gather*} 4 \, \log \left (4 \, e^{x} + 261\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 12, normalized size = 1.00
method | result | size |
derivativedivides | \(4 \ln \left (4 \,{\mathrm e}^{x}+261\right )^{2}\) | \(12\) |
default | \(4 \ln \left (4 \,{\mathrm e}^{x}+261\right )^{2}\) | \(12\) |
norman | \(4 \ln \left (4 \,{\mathrm e}^{x}+261\right )^{2}\) | \(12\) |
risch | \(4 \ln \left (4 \,{\mathrm e}^{x}+261\right )^{2}\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 11, normalized size = 0.92 \begin {gather*} 4 \, \log \left (4 \, e^{x} + 261\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 11, normalized size = 0.92 \begin {gather*} 4\,{\ln \left (4\,{\mathrm {e}}^x+261\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.83 \begin {gather*} 4 \log {\left (4 e^{x} + 261 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________