3.57.29 \(\int -\frac {2 e^{\sqrt [5]{e}}}{-27 x+27 x \log (x)-9 x \log ^2(x)+x \log ^3(x)} \, dx\)

Optimal. Leaf size=14 \[ \frac {e^{\sqrt [5]{e}}}{(-3+\log (x))^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 16, normalized size of antiderivative = 1.14, number of steps used = 3, number of rules used = 2, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {12, 32} \begin {gather*} \frac {e^{\sqrt [5]{e}}}{(3-\log (x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-2*E^E^(1/5))/(-27*x + 27*x*Log[x] - 9*x*Log[x]^2 + x*Log[x]^3),x]

[Out]

E^E^(1/5)/(3 - Log[x])^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (2 e^{\sqrt [5]{e}}\right ) \int \frac {1}{-27 x+27 x \log (x)-9 x \log ^2(x)+x \log ^3(x)} \, dx\right )\\ &=-\left (\left (2 e^{\sqrt [5]{e}}\right ) \operatorname {Subst}\left (\int \frac {1}{(-3+x)^3} \, dx,x,\log (x)\right )\right )\\ &=\frac {e^{\sqrt [5]{e}}}{(3-\log (x))^2}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 14, normalized size = 1.00 \begin {gather*} \frac {e^{\sqrt [5]{e}}}{(-3+\log (x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-2*E^E^(1/5))/(-27*x + 27*x*Log[x] - 9*x*Log[x]^2 + x*Log[x]^3),x]

[Out]

E^E^(1/5)/(-3 + Log[x])^2

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 16, normalized size = 1.14 \begin {gather*} \frac {e^{\left (e^{\frac {1}{5}}\right )}}{\log \relax (x)^{2} - 6 \, \log \relax (x) + 9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(exp(1/5))/(x*log(x)^3-9*x*log(x)^2+27*x*log(x)-27*x),x, algorithm="fricas")

[Out]

e^(e^(1/5))/(log(x)^2 - 6*log(x) + 9)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 10, normalized size = 0.71 \begin {gather*} \frac {e^{\left (e^{\frac {1}{5}}\right )}}{{\left (\log \relax (x) - 3\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(exp(1/5))/(x*log(x)^3-9*x*log(x)^2+27*x*log(x)-27*x),x, algorithm="giac")

[Out]

e^(e^(1/5))/(log(x) - 3)^2

________________________________________________________________________________________

maple [A]  time = 0.06, size = 11, normalized size = 0.79




method result size



default \(\frac {{\mathrm e}^{{\mathrm e}^{\frac {1}{5}}}}{\left (\ln \relax (x )-3\right )^{2}}\) \(11\)
norman \(\frac {{\mathrm e}^{{\mathrm e}^{\frac {1}{5}}}}{\left (\ln \relax (x )-3\right )^{2}}\) \(11\)
risch \(\frac {{\mathrm e}^{{\mathrm e}^{\frac {1}{5}}}}{\left (\ln \relax (x )-3\right )^{2}}\) \(11\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-2*exp(exp(1/5))/(x*ln(x)^3-9*x*ln(x)^2+27*x*ln(x)-27*x),x,method=_RETURNVERBOSE)

[Out]

exp(exp(1/5))/(ln(x)-3)^2

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 16, normalized size = 1.14 \begin {gather*} \frac {e^{\left (e^{\frac {1}{5}}\right )}}{\log \relax (x)^{2} - 6 \, \log \relax (x) + 9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(exp(1/5))/(x*log(x)^3-9*x*log(x)^2+27*x*log(x)-27*x),x, algorithm="maxima")

[Out]

e^(e^(1/5))/(log(x)^2 - 6*log(x) + 9)

________________________________________________________________________________________

mupad [B]  time = 3.63, size = 10, normalized size = 0.71 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{1/5}}}{{\left (\ln \relax (x)-3\right )}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*exp(exp(1/5)))/(27*x + 9*x*log(x)^2 - x*log(x)^3 - 27*x*log(x)),x)

[Out]

exp(exp(1/5))/(log(x) - 3)^2

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 17, normalized size = 1.21 \begin {gather*} \frac {e^{e^{\frac {1}{5}}}}{\log {\relax (x )}^{2} - 6 \log {\relax (x )} + 9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(exp(1/5))/(x*ln(x)**3-9*x*ln(x)**2+27*x*ln(x)-27*x),x)

[Out]

exp(exp(1/5))/(log(x)**2 - 6*log(x) + 9)

________________________________________________________________________________________