Optimal. Leaf size=33 \[ e^{2-\frac {25}{x}} \left (e^4-2^{\frac {1}{x}} e^{4/x} x^{\frac {1}{x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-25/x} \left (25 e^6+2^{\frac {1}{x}} e^{4/x} x^{\frac {1}{x}} \left (-26 e^2+e^2 \log \left (2 e^4 x\right )\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {25 e^{6-\frac {25}{x}}}{x^2}+2^{\frac {1}{x}} e^{2-\frac {21}{x}} x^{-2+\frac {1}{x}} \left (-22 \left (1-\frac {\log (2)}{22}\right )+\log (x)\right )\right ) \, dx\\ &=25 \int \frac {e^{6-\frac {25}{x}}}{x^2} \, dx+\int 2^{\frac {1}{x}} e^{2-\frac {21}{x}} x^{-2+\frac {1}{x}} \left (-22 \left (1-\frac {\log (2)}{22}\right )+\log (x)\right ) \, dx\\ &=e^{6-\frac {25}{x}}+\int e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \left (-22 \left (1-\frac {\log (2)}{22}\right )+\log (x)\right ) \, dx\\ &=e^{6-\frac {25}{x}}+\int \left (-22 e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \left (1-\frac {\log (2)}{22}\right )+e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \log (x)\right ) \, dx\\ &=e^{6-\frac {25}{x}}-(22-\log (2)) \int e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \, dx+\int e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \log (x) \, dx\\ &=e^{6-\frac {25}{x}}-(22-\log (2)) \int e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \, dx+\log (x) \int e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \, dx-\int \frac {\int e^{2+\frac {-21+\log (2)}{x}} x^{-2+\frac {1}{x}} \, dx}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 31, normalized size = 0.94 \begin {gather*} e^{6-\frac {25}{x}}-2^{\frac {1}{x}} e^{2-\frac {21}{x}} x^{\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 28, normalized size = 0.85 \begin {gather*} -\left (2 \, x e^{4}\right )^{\left (\frac {1}{x}\right )} e^{\left (-\frac {25}{x} + 2\right )} + e^{\left (-\frac {25}{x} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 28, normalized size = 0.85 \begin {gather*} -\left (2 \, x e^{4}\right )^{\left (\frac {1}{x}\right )} e^{\left (-\frac {25}{x} + 2\right )} + e^{\left (-\frac {25}{x} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 33, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{\frac {6 x -25}{x}}-\left (2 x \,{\mathrm e}^{4}\right )^{\frac {1}{x}} {\mathrm e}^{\frac {2 x -25}{x}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 32, normalized size = 0.97 \begin {gather*} {\left (e^{6} - e^{\left (\frac {\log \relax (2)}{x} + \frac {\log \relax (x)}{x} + \frac {4}{x} + 2\right )}\right )} e^{\left (-\frac {25}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.69, size = 26, normalized size = 0.79 \begin {gather*} {\mathrm {e}}^{6-\frac {25}{x}}-{\mathrm {e}}^{2-\frac {21}{x}}\,{\left (2\,x\right )}^{1/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.24, size = 27, normalized size = 0.82 \begin {gather*} - e^{2} e^{- \frac {25}{x}} e^{\frac {\log {\left (2 x e^{4} \right )}}{x}} + e^{6} e^{- \frac {25}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________