Optimal. Leaf size=27 \[ \frac {(-4+\log (x)) \log (4+2 x)}{\log \left (e^{2 e^3} (3-x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 10.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (8 x+4 x^2+\left (-2 x-x^2\right ) \log (x)\right ) \log (4+2 x)+\log \left (e^{2 e^3} (3-x)\right ) \left (12 x-4 x^2+\left (-3 x+x^2\right ) \log (x)+\left (-6-x+x^2\right ) \log (4+2 x)\right )}{\left (-6 x-x^2+x^3\right ) \log ^2\left (e^{2 e^3} (3-x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (8 x+4 x^2+\left (-2 x-x^2\right ) \log (x)\right ) \log (4+2 x)+\log \left (e^{2 e^3} (3-x)\right ) \left (12 x-4 x^2+\left (-3 x+x^2\right ) \log (x)+\left (-6-x+x^2\right ) \log (4+2 x)\right )}{x \left (-6-x+x^2\right ) \log ^2\left (e^{2 e^3} (3-x)\right )} \, dx\\ &=\int \frac {x (2+x) (-4+\log (x)) \log (2 (2+x))-(-3+x) \left (2 e^3+\log (3-x)\right ) (-4 x+x \log (x)+(2+x) \log (2 (2+x)))}{x \left (6+x-x^2\right ) \left (2 e^3+\log (3-x)\right )^2} \, dx\\ &=\int \left (\frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )}+\frac {\left (6 e^3-4 \left (1+\frac {e^3}{2}\right ) x+3 \log (3-x)-x \log (3-x)+x \log (x)\right ) \log (4+2 x)}{(3-x) x \left (2 e^3+\log (3-x)\right )^2}\right ) \, dx\\ &=\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx+\int \frac {\left (6 e^3-4 \left (1+\frac {e^3}{2}\right ) x+3 \log (3-x)-x \log (3-x)+x \log (x)\right ) \log (4+2 x)}{(3-x) x \left (2 e^3+\log (3-x)\right )^2} \, dx\\ &=\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx+\int \left (\frac {\left (6 e^3-4 \left (1+\frac {e^3}{2}\right ) x+3 \log (3-x)-x \log (3-x)+x \log (x)\right ) \log (4+2 x)}{3 (3-x) \left (2 e^3+\log (3-x)\right )^2}+\frac {\left (6 e^3-4 \left (1+\frac {e^3}{2}\right ) x+3 \log (3-x)-x \log (3-x)+x \log (x)\right ) \log (4+2 x)}{3 x \left (2 e^3+\log (3-x)\right )^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {\left (6 e^3-4 \left (1+\frac {e^3}{2}\right ) x+3 \log (3-x)-x \log (3-x)+x \log (x)\right ) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\frac {1}{3} \int \frac {\left (6 e^3-4 \left (1+\frac {e^3}{2}\right ) x+3 \log (3-x)-x \log (3-x)+x \log (x)\right ) \log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {2 \left (-2-e^3\right ) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2}+\frac {6 e^3 \log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2}-\frac {\log (3-x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2}+\frac {3 \log (3-x) \log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2}+\frac {\log (x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2}\right ) \, dx+\frac {1}{3} \int \left (\frac {6 e^3 \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2}+\frac {2 \left (-2-e^3\right ) x \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2}+\frac {3 \log (3-x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2}+\frac {x \log (3-x) \log (4+2 x)}{(-3+x) \left (2 e^3+\log (3-x)\right )^2}+\frac {x \log (x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2}\right ) \, dx+\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx\\ &=-\left (\frac {1}{3} \int \frac {\log (3-x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2} \, dx\right )+\frac {1}{3} \int \frac {x \log (3-x) \log (4+2 x)}{(-3+x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\frac {1}{3} \int \frac {\log (x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2} \, dx+\frac {1}{3} \int \frac {x \log (x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\left (2 e^3\right ) \int \frac {\log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\left (2 e^3\right ) \int \frac {\log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx-\frac {1}{3} \left (2 \left (2+e^3\right )\right ) \int \frac {\log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2} \, dx-\frac {1}{3} \left (2 \left (2+e^3\right )\right ) \int \frac {x \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx\\ &=-\left (\frac {1}{3} \int \frac {\log (3-x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2} \, dx\right )+\frac {1}{3} \int \frac {\log (x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2} \, dx+\frac {1}{3} \int \left (\frac {\log (3-x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2}+\frac {3 \log (3-x) \log (4+2 x)}{(-3+x) \left (2 e^3+\log (3-x)\right )^2}\right ) \, dx+\frac {1}{3} \int \left (-\frac {\log (x) \log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2}+\frac {3 \log (x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2}\right ) \, dx+\left (2 e^3\right ) \int \frac {\log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx-\left (2 e^3\right ) \operatorname {Subst}\left (\int \frac {\log (10-2 x)}{x \left (2 e^3+\log (x)\right )^2} \, dx,x,3-x\right )-\frac {1}{3} \left (2 \left (2+e^3\right )\right ) \int \frac {\log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2} \, dx-\frac {1}{3} \left (2 \left (2+e^3\right )\right ) \int \left (-\frac {\log (4+2 x)}{\left (2 e^3+\log (3-x)\right )^2}+\frac {3 \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2}\right ) \, dx+\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx\\ &=\left (2 e^3\right ) \int \frac {\log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx-\left (2 e^3\right ) \operatorname {Subst}\left (\int \frac {\log (10-2 x)}{x \left (2 e^3+\log (x)\right )^2} \, dx,x,3-x\right )-\left (2 \left (2+e^3\right )\right ) \int \frac {\log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{(-3+x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx\\ &=\left (2 e^3\right ) \int \frac {\log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx-\left (2 e^3\right ) \operatorname {Subst}\left (\int \frac {\log (10-2 x)}{x \left (2 e^3+\log (x)\right )^2} \, dx,x,3-x\right )+\left (2 \left (2+e^3\right )\right ) \operatorname {Subst}\left (\int \frac {\log (10-2 x)}{x \left (2 e^3+\log (x)\right )^2} \, dx,x,3-x\right )+\int \frac {-4+\log (x)}{(2+x) \left (2 e^3+\log (3-x)\right )} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{(-3+x) \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (3-x) \log (4+2 x)}{x \left (2 e^3+\log (3-x)\right )^2} \, dx+\int \frac {\log (x) \log (4+2 x)}{(3-x) \left (2 e^3+\log (3-x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 25, normalized size = 0.93 \begin {gather*} \frac {(-4+\log (x)) \log (2 (2+x))}{2 e^3+\log (3-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 24, normalized size = 0.89 \begin {gather*} \frac {{\left (\log \relax (x) - 4\right )} \log \left (2 \, x + 4\right )}{\log \left (-{\left (x - 3\right )} e^{\left (2 \, e^{3}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 32, normalized size = 1.19 \begin {gather*} \frac {\log \left (2 \, x + 4\right ) \log \relax (x) - 4 \, \log \left (2 \, x + 4\right )}{2 \, e^{3} + \log \left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 26, normalized size = 0.96
method | result | size |
risch | \(\frac {\left (\ln \relax (x )-4\right ) \ln \left (2 x +4\right )}{\ln \left (\left (3-x \right ) {\mathrm e}^{2 \,{\mathrm e}^{3}}\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 33, normalized size = 1.22 \begin {gather*} \frac {{\left (\log \relax (x) - 4\right )} \log \left (x + 2\right ) + \log \relax (2) \log \relax (x) - 4 \, \log \relax (2)}{2 \, e^{3} + \log \left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.76, size = 108, normalized size = 4.00 \begin {gather*} \ln \left (x\,\left (x+2\right )\right )+\frac {20}{x+2}-\frac {5\,\ln \relax (x)}{x+2}+\frac {\ln \left (2\,x+4\right )\,\left (\ln \relax (x)-4\right )-\frac {\ln \left (-{\mathrm {e}}^{2\,{\mathrm {e}}^3}\,\left (x-3\right )\right )\,\left (x-3\right )\,\left (2\,\ln \left (2\,x+4\right )-4\,x+x\,\ln \left (2\,x+4\right )+x\,\ln \relax (x)\right )}{x\,\left (x+2\right )}}{\ln \left (-{\mathrm {e}}^{2\,{\mathrm {e}}^3}\,\left (x-3\right )\right )}-\frac {3\,\ln \left (2\,x+4\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 29, normalized size = 1.07 \begin {gather*} \frac {\log {\relax (x )} \log {\left (2 x + 4 \right )} - 4 \log {\left (2 x + 4 \right )}}{\log {\left (\left (3 - x\right ) e^{2 e^{3}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________