3.57.14 \(\int \frac {-524288-6029312 x-33816576 x^2-122421248 x^3-318636032 x^4-627376128 x^5-953286656 x^6-1107525632 x^7-919941120 x^8-385378304 x^9+294787072 x^{10}+834330624 x^{11}+1048039936 x^{12}+944780032 x^{13}+671757312 x^{14}+389319040 x^{15}+186202360 x^{16}+73676772 x^{17}+24022348 x^{18}+6392524 x^{19}+1366512 x^{20}+229024 x^{21}+28984 x^{22}+2604 x^{23}+148 x^{24}+4 x^{25}+(-16777216-155189248 x-692060160 x^2-1974468608 x^3-4028628992 x^4-6230900736 x^5-7583563776 x^6-7507476480 x^7-6314655744 x^8-4819566592 x^9-3588702208 x^{10}-2665648128 x^{11}-1876140032 x^{12}-1163537408 x^{13}-604044288 x^{14}-254886144 x^{15}-85735680 x^{16}-22563072 x^{17}-4534144 x^{18}-670720 x^{19}-68736 x^{20}-4352 x^{21}-128 x^{22}) \log ^2(2)+(-234881024-1719664640 x-5926551552 x^2-12821987328 x^3-19465764864 x^4-21851799552 x^5-18554290176 x^6-11922309120 x^7-5668208640 x^8-1961197568 x^9-692240384 x^{10}-598818816 x^{11}-628064256 x^{12}-463816704 x^{13}-235607040 x^{14}-83576832 x^{15}-20511744 x^{16}-3336192 x^{17}-324608 x^{18}-14336 x^{19}) \log ^4(2)+(-1879048192-10737418240 x-27279753216 x^2-41842376704 x^3-43780145152 x^4-32967229440 x^5-18098421760 x^6-6245318656 x^7+1830813696 x^8+6824132608 x^9+7933394944 x^{10}+5707530240 x^{11}+2731442176 x^{12}+872218624 x^{13}+179208192 x^{14}+21495808 x^{15}+1146880 x^{16}) \log ^6(2)+(-9395240960-41607495680 x-71068286976 x^2-66504884224 x^3-41641050112 x^4-17817403392 x^5-6165626880 x^6-12507414528 x^7-22866296832 x^8-20920139776 x^9-10779099136 x^{10}-3228303360 x^{11}-528220160 x^{12}-36700160 x^{13}) \log ^8(2)+(-30064771072-104152956928 x-96636764160 x^2-23353884672 x^3-13690208256 x^4-11475615744 x^5+31809601536 x^6+48570040320 x^7+26575110144 x^8+6660554752 x^9+645922816 x^{10}) \log ^{10}(2)+(-60129542144-169651208192 x-41875931136 x^2+84825604096 x^3-18253611008 x^4-87375740928 x^5-43419435008 x^6-6576668672 x^7) \log ^{12}(2)+(-68719476736-171798691840 x+25769803776 x^2+120259084288 x^3+36507222016 x^4) \log ^{14}(2)+(-34359738368-85899345920 x) \log ^{16}(2)}{131072 x^5+1114112 x^6+4456448 x^7+11141120 x^8+19496960 x^9+25346048 x^{10}+25346048 x^{11}+19914752 x^{12}+12446720 x^{13}+6223360 x^{14}+2489344 x^{15}+792064 x^{16}+198016 x^{17}+38080 x^{18}+5440 x^{19}+544 x^{20}+34 x^{21}+x^{22}} \, dx\)

Optimal. Leaf size=26 \[ \left (3+\frac {\left (-1+x-\frac {64 \log ^2(2)}{(4+2 x)^2}\right )^2}{x}\right )^4 \]

________________________________________________________________________________________

Rubi [B]  time = 15.79, antiderivative size = 700, normalized size of antiderivative = 26.92, number of steps used = 2, number of rules used = 1, integrand size = 717, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.001, Rules used = {2074} \begin {gather*} x^4+\frac {\left (1+4 \log ^2(2)\right )^8}{x^4}+4 x^3+\frac {4 \left (1+4 \log ^2(2)\right )^6 \left (1-32 \log ^4(2)-16 \log ^2(2)\right )}{x^3}+10 x^2+\frac {2 \left (1+4 \log ^2(2)\right )^4 \left (5+4352 \log ^8(2)+4160 \log ^6(2)+912 \log ^4(2)-52 \log ^2(2)\right )}{x^2}+\frac {536870912 \log ^{16}(2)}{(x+2)^{15}}+\frac {268435456 \log ^{16}(2)}{(x+2)^{16}}+16 x \left (1-8 \log ^2(2)\right )+\frac {134217728 \log ^{14}(2) \left (3+5 \log ^2(2)\right )}{(x+2)^{14}}+\frac {671088640 \log ^{14}(2) \left (1+\log ^2(2)\right )}{(x+2)^{13}}+\frac {4194304 \log ^{12}(2) \left (57+140 \log ^4(2)+176 \log ^2(2)\right )}{(x+2)^{12}}+\frac {4194304 \log ^{12}(2) \left (75+112 \log ^4(2)+160 \log ^2(2)\right )}{(x+2)^{11}}+\frac {524288 \log ^{10}(2) \left (135+672 \log ^6(2)+1040 \log ^4(2)+572 \log ^2(2)\right )}{(x+2)^{10}}+\frac {1048576 \log ^{10}(2) \left (63+240 \log ^6(2)+392 \log ^4(2)+236 \log ^2(2)\right )}{(x+2)^9}+\frac {8192 \log ^8(2) \left (1323+21120 \log ^8(2)+35840 \log ^6(2)+22880 \log ^4(2)+6624 \log ^2(2)\right )}{(x+2)^8}+\frac {65536 \log ^8(2) \left (81+1760 \log ^8(2)+3072 \log ^6(2)+2044 \log ^4(2)+628 \log ^2(2)\right )}{(x+2)^7}+\frac {2048 \log ^6(2) \left (405+36608 \log ^{10}(2)+65280 \log ^8(2)+44800 \log ^6(2)+14416 \log ^4(2)+2034 \log ^2(2)\right )}{(x+2)^6}-\frac {2048 \log ^6(2) \left (27-23296 \log ^{10}(2)-42240 \log ^8(2)-29696 \log ^6(2)-9920 \log ^4(2)-1506 \log ^2(2)\right )}{(x+2)^5}+\frac {64 \log ^4(2) \left (513+465920 \log ^{12}(2)+856064 \log ^{10}(2)+613632 \log ^8(2)+211456 \log ^6(2)+34120 \log ^4(2)+2160 \log ^2(2)\right )}{(x+2)^4}-\frac {64 \log ^4(2) \left (351-286720 \log ^{12}(2)-532480 \log ^{10}(2)-387840 \log ^8(2)-137216 \log ^6(2)-23312 \log ^4(2)-1632 \log ^2(2)\right )}{(x+2)^3}+\frac {16 \left (1+4 \log ^2(2)\right )^2 \left (1-26112 \log ^{12}(2)-36224 \log ^{10}(2)-17056 \log ^8(2)-2792 \log ^6(2)-44 \log ^4(2)-10 \log ^2(2)\right )}{x}+\frac {8 \log ^2(2) \left (81+1392640 \log ^{14}(2)+2609152 \log ^{12}(2)+1926144 \log ^{10}(2)+697088 \log ^8(2)+123776 \log ^6(2)+9456 \log ^4(2)+1188 \log ^2(2)\right )}{(x+2)^2}-\frac {32 \log ^2(2) \left (27-208896 \log ^{14}(2)-394240 \log ^{12}(2)-294400 \log ^{10}(2)-108672 \log ^8(2)-20048 \log ^6(2)-1652 \log ^4(2)-54 \log ^2(2)\right )}{x+2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-524288 - 6029312*x - 33816576*x^2 - 122421248*x^3 - 318636032*x^4 - 627376128*x^5 - 953286656*x^6 - 1107
525632*x^7 - 919941120*x^8 - 385378304*x^9 + 294787072*x^10 + 834330624*x^11 + 1048039936*x^12 + 944780032*x^1
3 + 671757312*x^14 + 389319040*x^15 + 186202360*x^16 + 73676772*x^17 + 24022348*x^18 + 6392524*x^19 + 1366512*
x^20 + 229024*x^21 + 28984*x^22 + 2604*x^23 + 148*x^24 + 4*x^25 + (-16777216 - 155189248*x - 692060160*x^2 - 1
974468608*x^3 - 4028628992*x^4 - 6230900736*x^5 - 7583563776*x^6 - 7507476480*x^7 - 6314655744*x^8 - 481956659
2*x^9 - 3588702208*x^10 - 2665648128*x^11 - 1876140032*x^12 - 1163537408*x^13 - 604044288*x^14 - 254886144*x^1
5 - 85735680*x^16 - 22563072*x^17 - 4534144*x^18 - 670720*x^19 - 68736*x^20 - 4352*x^21 - 128*x^22)*Log[2]^2 +
 (-234881024 - 1719664640*x - 5926551552*x^2 - 12821987328*x^3 - 19465764864*x^4 - 21851799552*x^5 - 185542901
76*x^6 - 11922309120*x^7 - 5668208640*x^8 - 1961197568*x^9 - 692240384*x^10 - 598818816*x^11 - 628064256*x^12
- 463816704*x^13 - 235607040*x^14 - 83576832*x^15 - 20511744*x^16 - 3336192*x^17 - 324608*x^18 - 14336*x^19)*L
og[2]^4 + (-1879048192 - 10737418240*x - 27279753216*x^2 - 41842376704*x^3 - 43780145152*x^4 - 32967229440*x^5
 - 18098421760*x^6 - 6245318656*x^7 + 1830813696*x^8 + 6824132608*x^9 + 7933394944*x^10 + 5707530240*x^11 + 27
31442176*x^12 + 872218624*x^13 + 179208192*x^14 + 21495808*x^15 + 1146880*x^16)*Log[2]^6 + (-9395240960 - 4160
7495680*x - 71068286976*x^2 - 66504884224*x^3 - 41641050112*x^4 - 17817403392*x^5 - 6165626880*x^6 - 125074145
28*x^7 - 22866296832*x^8 - 20920139776*x^9 - 10779099136*x^10 - 3228303360*x^11 - 528220160*x^12 - 36700160*x^
13)*Log[2]^8 + (-30064771072 - 104152956928*x - 96636764160*x^2 - 23353884672*x^3 - 13690208256*x^4 - 11475615
744*x^5 + 31809601536*x^6 + 48570040320*x^7 + 26575110144*x^8 + 6660554752*x^9 + 645922816*x^10)*Log[2]^10 + (
-60129542144 - 169651208192*x - 41875931136*x^2 + 84825604096*x^3 - 18253611008*x^4 - 87375740928*x^5 - 434194
35008*x^6 - 6576668672*x^7)*Log[2]^12 + (-68719476736 - 171798691840*x + 25769803776*x^2 + 120259084288*x^3 +
36507222016*x^4)*Log[2]^14 + (-34359738368 - 85899345920*x)*Log[2]^16)/(131072*x^5 + 1114112*x^6 + 4456448*x^7
 + 11141120*x^8 + 19496960*x^9 + 25346048*x^10 + 25346048*x^11 + 19914752*x^12 + 12446720*x^13 + 6223360*x^14
+ 2489344*x^15 + 792064*x^16 + 198016*x^17 + 38080*x^18 + 5440*x^19 + 544*x^20 + 34*x^21 + x^22),x]

[Out]

10*x^2 + 4*x^3 + x^4 + (268435456*Log[2]^16)/(2 + x)^16 + (536870912*Log[2]^16)/(2 + x)^15 + 16*x*(1 - 8*Log[2
]^2) + (671088640*Log[2]^14*(1 + Log[2]^2))/(2 + x)^13 + (1 + 4*Log[2]^2)^8/x^4 + (134217728*Log[2]^14*(3 + 5*
Log[2]^2))/(2 + x)^14 + (4*(1 + 4*Log[2]^2)^6*(1 - 16*Log[2]^2 - 32*Log[2]^4))/x^3 + (4194304*Log[2]^12*(75 +
160*Log[2]^2 + 112*Log[2]^4))/(2 + x)^11 + (4194304*Log[2]^12*(57 + 176*Log[2]^2 + 140*Log[2]^4))/(2 + x)^12 +
 (1048576*Log[2]^10*(63 + 236*Log[2]^2 + 392*Log[2]^4 + 240*Log[2]^6))/(2 + x)^9 + (524288*Log[2]^10*(135 + 57
2*Log[2]^2 + 1040*Log[2]^4 + 672*Log[2]^6))/(2 + x)^10 + (65536*Log[2]^8*(81 + 628*Log[2]^2 + 2044*Log[2]^4 +
3072*Log[2]^6 + 1760*Log[2]^8))/(2 + x)^7 + (2*(1 + 4*Log[2]^2)^4*(5 - 52*Log[2]^2 + 912*Log[2]^4 + 4160*Log[2
]^6 + 4352*Log[2]^8))/x^2 + (8192*Log[2]^8*(1323 + 6624*Log[2]^2 + 22880*Log[2]^4 + 35840*Log[2]^6 + 21120*Log
[2]^8))/(2 + x)^8 - (2048*Log[2]^6*(27 - 1506*Log[2]^2 - 9920*Log[2]^4 - 29696*Log[2]^6 - 42240*Log[2]^8 - 232
96*Log[2]^10))/(2 + x)^5 + (2048*Log[2]^6*(405 + 2034*Log[2]^2 + 14416*Log[2]^4 + 44800*Log[2]^6 + 65280*Log[2
]^8 + 36608*Log[2]^10))/(2 + x)^6 - (64*Log[2]^4*(351 - 1632*Log[2]^2 - 23312*Log[2]^4 - 137216*Log[2]^6 - 387
840*Log[2]^8 - 532480*Log[2]^10 - 286720*Log[2]^12))/(2 + x)^3 + (16*(1 + 4*Log[2]^2)^2*(1 - 10*Log[2]^2 - 44*
Log[2]^4 - 2792*Log[2]^6 - 17056*Log[2]^8 - 36224*Log[2]^10 - 26112*Log[2]^12))/x + (64*Log[2]^4*(513 + 2160*L
og[2]^2 + 34120*Log[2]^4 + 211456*Log[2]^6 + 613632*Log[2]^8 + 856064*Log[2]^10 + 465920*Log[2]^12))/(2 + x)^4
 - (32*Log[2]^2*(27 - 54*Log[2]^2 - 1652*Log[2]^4 - 20048*Log[2]^6 - 108672*Log[2]^8 - 294400*Log[2]^10 - 3942
40*Log[2]^12 - 208896*Log[2]^14))/(2 + x) + (8*Log[2]^2*(81 + 1188*Log[2]^2 + 9456*Log[2]^4 + 123776*Log[2]^6
+ 697088*Log[2]^8 + 1926144*Log[2]^10 + 2609152*Log[2]^12 + 1392640*Log[2]^14))/(2 + x)^2

Rule 2074

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [B]  time = 0.99, size = 711, normalized size = 27.35 \begin {gather*} 4 \left (\frac {5 x^2}{2}+x^3+\frac {x^4}{4}+\frac {67108864 \log ^{16}(2)}{(2+x)^{16}}+\frac {134217728 \log ^{16}(2)}{(2+x)^{15}}+\frac {167772160 \log ^{14}(2) \left (1+\log ^2(2)\right )}{(2+x)^{13}}+\frac {\left (1+4 \log ^2(2)\right )^8}{4 x^4}+\frac {33554432 \log ^{14}(2) \left (3+5 \log ^2(2)\right )}{(2+x)^{14}}-4 x \left (-1+8 \log ^2(2)\right )-\frac {\left (1+4 \log ^2(2)\right )^6 \left (-1+16 \log ^2(2)+32 \log ^4(2)\right )}{x^3}+\frac {1048576 \log ^{12}(2) \left (75+160 \log ^2(2)+112 \log ^4(2)\right )}{(2+x)^{11}}+\frac {1048576 \log ^{12}(2) \left (57+176 \log ^2(2)+140 \log ^4(2)\right )}{(2+x)^{12}}+\frac {262144 \log ^{10}(2) \left (63+236 \log ^2(2)+392 \log ^4(2)+240 \log ^6(2)\right )}{(2+x)^9}+\frac {131072 \log ^{10}(2) \left (135+572 \log ^2(2)+1040 \log ^4(2)+672 \log ^6(2)\right )}{(2+x)^{10}}+\frac {16384 \log ^8(2) \left (81+628 \log ^2(2)+2044 \log ^4(2)+3072 \log ^6(2)+1760 \log ^8(2)\right )}{(2+x)^7}+\frac {\left (1+4 \log ^2(2)\right )^4 \left (5-52 \log ^2(2)+912 \log ^4(2)+4160 \log ^6(2)+4352 \log ^8(2)\right )}{2 x^2}+\frac {2048 \log ^8(2) \left (1323+6624 \log ^2(2)+22880 \log ^4(2)+35840 \log ^6(2)+21120 \log ^8(2)\right )}{(2+x)^8}+\frac {512 \log ^6(2) \left (-27+1506 \log ^2(2)+9920 \log ^4(2)+29696 \log ^6(2)+42240 \log ^8(2)+23296 \log ^{10}(2)\right )}{(2+x)^5}+\frac {512 \log ^6(2) \left (405+2034 \log ^2(2)+14416 \log ^4(2)+44800 \log ^6(2)+65280 \log ^8(2)+36608 \log ^{10}(2)\right )}{(2+x)^6}-\frac {4 \left (1+4 \log ^2(2)\right )^2 \left (-1+10 \log ^2(2)+44 \log ^4(2)+2792 \log ^6(2)+17056 \log ^8(2)+36224 \log ^{10}(2)+26112 \log ^{12}(2)\right )}{x}+\frac {16 \log ^4(2) \left (-351+1632 \log ^2(2)+23312 \log ^4(2)+137216 \log ^6(2)+387840 \log ^8(2)+532480 \log ^{10}(2)+286720 \log ^{12}(2)\right )}{(2+x)^3}+\frac {16 \log ^4(2) \left (513+2160 \log ^2(2)+34120 \log ^4(2)+211456 \log ^6(2)+613632 \log ^8(2)+856064 \log ^{10}(2)+465920 \log ^{12}(2)\right )}{(2+x)^4}+\frac {8 \log ^2(2) \left (-27+54 \log ^2(2)+1652 \log ^4(2)+20048 \log ^6(2)+108672 \log ^8(2)+294400 \log ^{10}(2)+394240 \log ^{12}(2)+208896 \log ^{14}(2)\right )}{2+x}+\frac {2 \log ^2(2) \left (81+1188 \log ^2(2)+9456 \log ^4(2)+123776 \log ^6(2)+697088 \log ^8(2)+1926144 \log ^{10}(2)+2609152 \log ^{12}(2)+1392640 \log ^{14}(2)\right )}{(2+x)^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-524288 - 6029312*x - 33816576*x^2 - 122421248*x^3 - 318636032*x^4 - 627376128*x^5 - 953286656*x^6
- 1107525632*x^7 - 919941120*x^8 - 385378304*x^9 + 294787072*x^10 + 834330624*x^11 + 1048039936*x^12 + 9447800
32*x^13 + 671757312*x^14 + 389319040*x^15 + 186202360*x^16 + 73676772*x^17 + 24022348*x^18 + 6392524*x^19 + 13
66512*x^20 + 229024*x^21 + 28984*x^22 + 2604*x^23 + 148*x^24 + 4*x^25 + (-16777216 - 155189248*x - 692060160*x
^2 - 1974468608*x^3 - 4028628992*x^4 - 6230900736*x^5 - 7583563776*x^6 - 7507476480*x^7 - 6314655744*x^8 - 481
9566592*x^9 - 3588702208*x^10 - 2665648128*x^11 - 1876140032*x^12 - 1163537408*x^13 - 604044288*x^14 - 2548861
44*x^15 - 85735680*x^16 - 22563072*x^17 - 4534144*x^18 - 670720*x^19 - 68736*x^20 - 4352*x^21 - 128*x^22)*Log[
2]^2 + (-234881024 - 1719664640*x - 5926551552*x^2 - 12821987328*x^3 - 19465764864*x^4 - 21851799552*x^5 - 185
54290176*x^6 - 11922309120*x^7 - 5668208640*x^8 - 1961197568*x^9 - 692240384*x^10 - 598818816*x^11 - 628064256
*x^12 - 463816704*x^13 - 235607040*x^14 - 83576832*x^15 - 20511744*x^16 - 3336192*x^17 - 324608*x^18 - 14336*x
^19)*Log[2]^4 + (-1879048192 - 10737418240*x - 27279753216*x^2 - 41842376704*x^3 - 43780145152*x^4 - 329672294
40*x^5 - 18098421760*x^6 - 6245318656*x^7 + 1830813696*x^8 + 6824132608*x^9 + 7933394944*x^10 + 5707530240*x^1
1 + 2731442176*x^12 + 872218624*x^13 + 179208192*x^14 + 21495808*x^15 + 1146880*x^16)*Log[2]^6 + (-9395240960
- 41607495680*x - 71068286976*x^2 - 66504884224*x^3 - 41641050112*x^4 - 17817403392*x^5 - 6165626880*x^6 - 125
07414528*x^7 - 22866296832*x^8 - 20920139776*x^9 - 10779099136*x^10 - 3228303360*x^11 - 528220160*x^12 - 36700
160*x^13)*Log[2]^8 + (-30064771072 - 104152956928*x - 96636764160*x^2 - 23353884672*x^3 - 13690208256*x^4 - 11
475615744*x^5 + 31809601536*x^6 + 48570040320*x^7 + 26575110144*x^8 + 6660554752*x^9 + 645922816*x^10)*Log[2]^
10 + (-60129542144 - 169651208192*x - 41875931136*x^2 + 84825604096*x^3 - 18253611008*x^4 - 87375740928*x^5 -
43419435008*x^6 - 6576668672*x^7)*Log[2]^12 + (-68719476736 - 171798691840*x + 25769803776*x^2 + 120259084288*
x^3 + 36507222016*x^4)*Log[2]^14 + (-34359738368 - 85899345920*x)*Log[2]^16)/(131072*x^5 + 1114112*x^6 + 44564
48*x^7 + 11141120*x^8 + 19496960*x^9 + 25346048*x^10 + 25346048*x^11 + 19914752*x^12 + 12446720*x^13 + 6223360
*x^14 + 2489344*x^15 + 792064*x^16 + 198016*x^17 + 38080*x^18 + 5440*x^19 + 544*x^20 + 34*x^21 + x^22),x]

[Out]

4*((5*x^2)/2 + x^3 + x^4/4 + (67108864*Log[2]^16)/(2 + x)^16 + (134217728*Log[2]^16)/(2 + x)^15 + (167772160*L
og[2]^14*(1 + Log[2]^2))/(2 + x)^13 + (1 + 4*Log[2]^2)^8/(4*x^4) + (33554432*Log[2]^14*(3 + 5*Log[2]^2))/(2 +
x)^14 - 4*x*(-1 + 8*Log[2]^2) - ((1 + 4*Log[2]^2)^6*(-1 + 16*Log[2]^2 + 32*Log[2]^4))/x^3 + (1048576*Log[2]^12
*(75 + 160*Log[2]^2 + 112*Log[2]^4))/(2 + x)^11 + (1048576*Log[2]^12*(57 + 176*Log[2]^2 + 140*Log[2]^4))/(2 +
x)^12 + (262144*Log[2]^10*(63 + 236*Log[2]^2 + 392*Log[2]^4 + 240*Log[2]^6))/(2 + x)^9 + (131072*Log[2]^10*(13
5 + 572*Log[2]^2 + 1040*Log[2]^4 + 672*Log[2]^6))/(2 + x)^10 + (16384*Log[2]^8*(81 + 628*Log[2]^2 + 2044*Log[2
]^4 + 3072*Log[2]^6 + 1760*Log[2]^8))/(2 + x)^7 + ((1 + 4*Log[2]^2)^4*(5 - 52*Log[2]^2 + 912*Log[2]^4 + 4160*L
og[2]^6 + 4352*Log[2]^8))/(2*x^2) + (2048*Log[2]^8*(1323 + 6624*Log[2]^2 + 22880*Log[2]^4 + 35840*Log[2]^6 + 2
1120*Log[2]^8))/(2 + x)^8 + (512*Log[2]^6*(-27 + 1506*Log[2]^2 + 9920*Log[2]^4 + 29696*Log[2]^6 + 42240*Log[2]
^8 + 23296*Log[2]^10))/(2 + x)^5 + (512*Log[2]^6*(405 + 2034*Log[2]^2 + 14416*Log[2]^4 + 44800*Log[2]^6 + 6528
0*Log[2]^8 + 36608*Log[2]^10))/(2 + x)^6 - (4*(1 + 4*Log[2]^2)^2*(-1 + 10*Log[2]^2 + 44*Log[2]^4 + 2792*Log[2]
^6 + 17056*Log[2]^8 + 36224*Log[2]^10 + 26112*Log[2]^12))/x + (16*Log[2]^4*(-351 + 1632*Log[2]^2 + 23312*Log[2
]^4 + 137216*Log[2]^6 + 387840*Log[2]^8 + 532480*Log[2]^10 + 286720*Log[2]^12))/(2 + x)^3 + (16*Log[2]^4*(513
+ 2160*Log[2]^2 + 34120*Log[2]^4 + 211456*Log[2]^6 + 613632*Log[2]^8 + 856064*Log[2]^10 + 465920*Log[2]^12))/(
2 + x)^4 + (8*Log[2]^2*(-27 + 54*Log[2]^2 + 1652*Log[2]^4 + 20048*Log[2]^6 + 108672*Log[2]^8 + 294400*Log[2]^1
0 + 394240*Log[2]^12 + 208896*Log[2]^14))/(2 + x) + (2*Log[2]^2*(81 + 1188*Log[2]^2 + 9456*Log[2]^4 + 123776*L
og[2]^6 + 697088*Log[2]^8 + 1926144*Log[2]^10 + 2609152*Log[2]^12 + 1392640*Log[2]^14))/(2 + x)^2)

________________________________________________________________________________________

fricas [B]  time = 0.70, size = 666, normalized size = 25.62 \begin {gather*} \frac {x^{24} + 36 \, x^{23} + 618 \, x^{22} + 6736 \, x^{21} + 52352 \, x^{20} + 308752 \, x^{19} + 1435018 \, x^{18} + 5386052 \, x^{17} + 16590145 \, x^{16} + 4294967296 \, \log \relax (2)^{16} + 42392224 \, x^{15} - 2147483648 \, {\left (x^{3} + 3 \, x^{2} - 4\right )} \log \relax (2)^{14} + 90551648 \, x^{14} + 162753664 \, x^{13} + 67108864 \, {\left (7 \, x^{6} + 45 \, x^{5} + 87 \, x^{4} + 16 \, x^{3} - 72 \, x^{2} + 48 \, x + 112\right )} \log \relax (2)^{12} + 248098240 \, x^{12} + 324614656 \, x^{11} - 8388608 \, {\left (7 \, x^{9} + 72 \, x^{8} + 288 \, x^{7} + 537 \, x^{6} + 396 \, x^{5} - 36 \, x^{4} - 96 \, x^{3} - 144 \, x^{2} - 576 \, x - 448\right )} \log \relax (2)^{10} + 371027456 \, x^{10} + 377958400 \, x^{9} + 131072 \, {\left (35 \, x^{12} + 510 \, x^{11} + 3177 \, x^{10} + 10942 \, x^{9} + 22419 \, x^{8} + 27216 \, x^{7} + 18480 \, x^{6} + 8064 \, x^{5} + 9504 \, x^{4} + 18688 \, x^{3} + 26112 \, x^{2} + 23040 \, x + 8960\right )} \log \relax (2)^{8} + 347080192 \, x^{8} + 284352512 \, x^{7} - 32768 \, {\left (7 \, x^{15} + 135 \, x^{14} + 1167 \, x^{13} + 5953 \, x^{12} + 19845 \, x^{11} + 45201 \, x^{10} + 71320 \, x^{9} + 76788 \, x^{8} + 51552 \, x^{7} + 8480 \, x^{6} - 34560 \, x^{5} - 67200 \, x^{4} - 78592 \, x^{3} - 62208 \, x^{2} - 30720 \, x - 7168\right )} \log \relax (2)^{6} + 200974336 \, x^{6} + 117145600 \, x^{5} + 1024 \, {\left (7 \, x^{18} + 171 \, x^{17} + 1926 \, x^{16} + 13251 \, x^{15} + 62190 \, x^{14} + 210555 \, x^{13} + 530367 \, x^{12} + 1011024 \, x^{11} + 1473912 \, x^{10} + 1669360 \, x^{9} + 1550736 \, x^{8} + 1380096 \, x^{7} + 1423104 \, x^{6} + 1587456 \, x^{5} + 1532160 \, x^{4} + 1118208 \, x^{3} + 571392 \, x^{2} + 184320 \, x + 28672\right )} \log \relax (2)^{4} + 53854208 \, x^{4} + 18743296 \, x^{3} - 128 \, {\left (x^{21} + 32 \, x^{20} + 487 \, x^{19} + 4685 \, x^{18} + 31919 \, x^{17} + 163405 \, x^{16} + 650382 \, x^{15} + 2052851 \, x^{14} + 5191132 \, x^{13} + 10543780 \, x^{12} + 17115904 \, x^{11} + 21879728 \, x^{10} + 21320000 \, x^{9} + 14628928 \, x^{8} + 5207552 \, x^{7} - 1957632 \, x^{6} - 4471808 \, x^{5} - 3601408 \, x^{4} - 1851392 \, x^{3} - 651264 \, x^{2} - 147456 \, x - 16384\right )} \log \relax (2)^{2} + 4718592 \, x^{2} + 786432 \, x + 65536}{x^{20} + 32 \, x^{19} + 480 \, x^{18} + 4480 \, x^{17} + 29120 \, x^{16} + 139776 \, x^{15} + 512512 \, x^{14} + 1464320 \, x^{13} + 3294720 \, x^{12} + 5857280 \, x^{11} + 8200192 \, x^{10} + 8945664 \, x^{9} + 7454720 \, x^{8} + 4587520 \, x^{7} + 1966080 \, x^{6} + 524288 \, x^{5} + 65536 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-524288-6029312*x-318636032*x^4-122421248*x^3-33816576*x^2-953286656*x^6-627376128*x^5-1107525632*x
^7-919941120*x^8+294787072*x^10-385378304*x^9+389319040*x^15+186202360*x^16+834330624*x^11+1048039936*x^12+944
780032*x^13+671757312*x^14+73676772*x^17+1366512*x^20+6392524*x^19+24022348*x^18+(-128*x^22-4352*x^21-68736*x^
20-670720*x^19-4534144*x^18-22563072*x^17-85735680*x^16-254886144*x^15-604044288*x^14-1163537408*x^13-18761400
32*x^12-2665648128*x^11-3588702208*x^10-4819566592*x^9-6314655744*x^8-7507476480*x^7-7583563776*x^6-6230900736
*x^5-4028628992*x^4-1974468608*x^3-692060160*x^2-155189248*x-16777216)*log(2)^2+(-85899345920*x-34359738368)*l
og(2)^16+(36507222016*x^4+120259084288*x^3+25769803776*x^2-171798691840*x-68719476736)*log(2)^14+(-6576668672*
x^7-43419435008*x^6-87375740928*x^5-18253611008*x^4+84825604096*x^3-41875931136*x^2-169651208192*x-60129542144
)*log(2)^12+(645922816*x^10+6660554752*x^9+26575110144*x^8+48570040320*x^7+31809601536*x^6-11475615744*x^5-136
90208256*x^4-23353884672*x^3-96636764160*x^2-104152956928*x-30064771072)*log(2)^10+(-36700160*x^13-528220160*x
^12-3228303360*x^11-10779099136*x^10-20920139776*x^9-22866296832*x^8-12507414528*x^7-6165626880*x^6-1781740339
2*x^5-41641050112*x^4-66504884224*x^3-71068286976*x^2-41607495680*x-9395240960)*log(2)^8+(1146880*x^16+2149580
8*x^15+179208192*x^14+872218624*x^13+2731442176*x^12+5707530240*x^11+7933394944*x^10+6824132608*x^9+1830813696
*x^8-6245318656*x^7-18098421760*x^6-32967229440*x^5-43780145152*x^4-41842376704*x^3-27279753216*x^2-1073741824
0*x-1879048192)*log(2)^6+(-14336*x^19-324608*x^18-3336192*x^17-20511744*x^16-83576832*x^15-235607040*x^14-4638
16704*x^13-628064256*x^12-598818816*x^11-692240384*x^10-1961197568*x^9-5668208640*x^8-11922309120*x^7-18554290
176*x^6-21851799552*x^5-19465764864*x^4-12821987328*x^3-5926551552*x^2-1719664640*x-234881024)*log(2)^4+4*x^25
+148*x^24+2604*x^23+28984*x^22+229024*x^21)/(x^22+34*x^21+544*x^20+5440*x^19+38080*x^18+198016*x^17+792064*x^1
6+2489344*x^15+6223360*x^14+12446720*x^13+19914752*x^12+25346048*x^11+25346048*x^10+19496960*x^9+11141120*x^8+
4456448*x^7+1114112*x^6+131072*x^5),x, algorithm="fricas")

[Out]

(x^24 + 36*x^23 + 618*x^22 + 6736*x^21 + 52352*x^20 + 308752*x^19 + 1435018*x^18 + 5386052*x^17 + 16590145*x^1
6 + 4294967296*log(2)^16 + 42392224*x^15 - 2147483648*(x^3 + 3*x^2 - 4)*log(2)^14 + 90551648*x^14 + 162753664*
x^13 + 67108864*(7*x^6 + 45*x^5 + 87*x^4 + 16*x^3 - 72*x^2 + 48*x + 112)*log(2)^12 + 248098240*x^12 + 32461465
6*x^11 - 8388608*(7*x^9 + 72*x^8 + 288*x^7 + 537*x^6 + 396*x^5 - 36*x^4 - 96*x^3 - 144*x^2 - 576*x - 448)*log(
2)^10 + 371027456*x^10 + 377958400*x^9 + 131072*(35*x^12 + 510*x^11 + 3177*x^10 + 10942*x^9 + 22419*x^8 + 2721
6*x^7 + 18480*x^6 + 8064*x^5 + 9504*x^4 + 18688*x^3 + 26112*x^2 + 23040*x + 8960)*log(2)^8 + 347080192*x^8 + 2
84352512*x^7 - 32768*(7*x^15 + 135*x^14 + 1167*x^13 + 5953*x^12 + 19845*x^11 + 45201*x^10 + 71320*x^9 + 76788*
x^8 + 51552*x^7 + 8480*x^6 - 34560*x^5 - 67200*x^4 - 78592*x^3 - 62208*x^2 - 30720*x - 7168)*log(2)^6 + 200974
336*x^6 + 117145600*x^5 + 1024*(7*x^18 + 171*x^17 + 1926*x^16 + 13251*x^15 + 62190*x^14 + 210555*x^13 + 530367
*x^12 + 1011024*x^11 + 1473912*x^10 + 1669360*x^9 + 1550736*x^8 + 1380096*x^7 + 1423104*x^6 + 1587456*x^5 + 15
32160*x^4 + 1118208*x^3 + 571392*x^2 + 184320*x + 28672)*log(2)^4 + 53854208*x^4 + 18743296*x^3 - 128*(x^21 +
32*x^20 + 487*x^19 + 4685*x^18 + 31919*x^17 + 163405*x^16 + 650382*x^15 + 2052851*x^14 + 5191132*x^13 + 105437
80*x^12 + 17115904*x^11 + 21879728*x^10 + 21320000*x^9 + 14628928*x^8 + 5207552*x^7 - 1957632*x^6 - 4471808*x^
5 - 3601408*x^4 - 1851392*x^3 - 651264*x^2 - 147456*x - 16384)*log(2)^2 + 4718592*x^2 + 786432*x + 65536)/(x^2
0 + 32*x^19 + 480*x^18 + 4480*x^17 + 29120*x^16 + 139776*x^15 + 512512*x^14 + 1464320*x^13 + 3294720*x^12 + 58
57280*x^11 + 8200192*x^10 + 8945664*x^9 + 7454720*x^8 + 4587520*x^7 + 1966080*x^6 + 524288*x^5 + 65536*x^4)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-524288-6029312*x-318636032*x^4-122421248*x^3-33816576*x^2-953286656*x^6-627376128*x^5-1107525632*x
^7-919941120*x^8+294787072*x^10-385378304*x^9+389319040*x^15+186202360*x^16+834330624*x^11+1048039936*x^12+944
780032*x^13+671757312*x^14+73676772*x^17+1366512*x^20+6392524*x^19+24022348*x^18+(-128*x^22-4352*x^21-68736*x^
20-670720*x^19-4534144*x^18-22563072*x^17-85735680*x^16-254886144*x^15-604044288*x^14-1163537408*x^13-18761400
32*x^12-2665648128*x^11-3588702208*x^10-4819566592*x^9-6314655744*x^8-7507476480*x^7-7583563776*x^6-6230900736
*x^5-4028628992*x^4-1974468608*x^3-692060160*x^2-155189248*x-16777216)*log(2)^2+(-85899345920*x-34359738368)*l
og(2)^16+(36507222016*x^4+120259084288*x^3+25769803776*x^2-171798691840*x-68719476736)*log(2)^14+(-6576668672*
x^7-43419435008*x^6-87375740928*x^5-18253611008*x^4+84825604096*x^3-41875931136*x^2-169651208192*x-60129542144
)*log(2)^12+(645922816*x^10+6660554752*x^9+26575110144*x^8+48570040320*x^7+31809601536*x^6-11475615744*x^5-136
90208256*x^4-23353884672*x^3-96636764160*x^2-104152956928*x-30064771072)*log(2)^10+(-36700160*x^13-528220160*x
^12-3228303360*x^11-10779099136*x^10-20920139776*x^9-22866296832*x^8-12507414528*x^7-6165626880*x^6-1781740339
2*x^5-41641050112*x^4-66504884224*x^3-71068286976*x^2-41607495680*x-9395240960)*log(2)^8+(1146880*x^16+2149580
8*x^15+179208192*x^14+872218624*x^13+2731442176*x^12+5707530240*x^11+7933394944*x^10+6824132608*x^9+1830813696
*x^8-6245318656*x^7-18098421760*x^6-32967229440*x^5-43780145152*x^4-41842376704*x^3-27279753216*x^2-1073741824
0*x-1879048192)*log(2)^6+(-14336*x^19-324608*x^18-3336192*x^17-20511744*x^16-83576832*x^15-235607040*x^14-4638
16704*x^13-628064256*x^12-598818816*x^11-692240384*x^10-1961197568*x^9-5668208640*x^8-11922309120*x^7-18554290
176*x^6-21851799552*x^5-19465764864*x^4-12821987328*x^3-5926551552*x^2-1719664640*x-234881024)*log(2)^4+4*x^25
+148*x^24+2604*x^23+28984*x^22+229024*x^21)/(x^22+34*x^21+544*x^20+5440*x^19+38080*x^18+198016*x^17+792064*x^1
6+2489344*x^15+6223360*x^14+12446720*x^13+19914752*x^12+25346048*x^11+25346048*x^10+19496960*x^9+11141120*x^8+
4456448*x^7+1114112*x^6+131072*x^5),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 1.10, size = 683, normalized size = 26.27




method result size



norman \(\frac {65536+29360128 \ln \relax (2)^{4}+1174405120 \ln \relax (2)^{8}+2097152 \ln \relax (2)^{2}+\left (188743680 \ln \relax (2)^{4}+3019898880 \ln \relax (2)^{8}+18874368 \ln \relax (2)^{2}+1006632960 \ln \relax (2)^{6}+3221225472 \ln \relax (2)^{12}+786432+4831838208 \ln \relax (2)^{10}\right ) x +\left (585105408 \ln \relax (2)^{4}+3422552064 \ln \relax (2)^{8}+83361792 \ln \relax (2)^{2}+2038431744 \ln \relax (2)^{6}-4831838208 \ln \relax (2)^{12}+4718592-6442450944 \ln \relax (2)^{14}+1207959552 \ln \relax (2)^{10}\right ) x^{2}+\left (1145044992 \ln \relax (2)^{4}+2449473536 \ln \relax (2)^{8}+236978176 \ln \relax (2)^{2}+2575302656 \ln \relax (2)^{6}+1073741824 \ln \relax (2)^{12}+18743296-2147483648 \ln \relax (2)^{14}+805306368 \ln \relax (2)^{10}\right ) x^{3}+\left (6736-128 \ln \relax (2)^{2}\right ) x^{21}+\left (1568931840 \ln \relax (2)^{4}+1245708288 \ln \relax (2)^{8}+729415680 \ln \relax (2)^{2}+2202009600 \ln \relax (2)^{6}+5838471168 \ln \relax (2)^{12}-3377086464+301989888 \ln \relax (2)^{10}\right ) x^{4}+\left (1625554944 \ln \relax (2)^{4}+1056964608 \ln \relax (2)^{8}+2719875072 \ln \relax (2)^{2}+1132462080 \ln \relax (2)^{6}+3019898880 \ln \relax (2)^{12}-27330379776-3321888768 \ln \relax (2)^{10}\right ) x^{5}+\left (1457258496 \ln \relax (2)^{4}+2422210560 \ln \relax (2)^{8}+8303640576 \ln \relax (2)^{2}-277872640 \ln \relax (2)^{6}+469762048 \ln \relax (2)^{12}-102727245824-4504682496 \ln \relax (2)^{10}\right ) x^{6}+\left (1413218304 \ln \relax (2)^{4}+3567255552 \ln \relax (2)^{8}+18123915264 \ln \relax (2)^{2}-1689255936 \ln \relax (2)^{6}-239881494528-2415919104 \ln \relax (2)^{10}\right ) x^{7}+\left (-389922421248+1587953664 \ln \relax (2)^{4}+2938503168 \ln \relax (2)^{8}+28662030336 \ln \relax (2)^{2}-2516189184 \ln \relax (2)^{6}-603979776 \ln \relax (2)^{10}\right ) x^{8}+\left (-467945443328+1709424640 \ln \relax (2)^{4}+1434189824 \ln \relax (2)^{8}+33912479744 \ln \relax (2)^{2}-2337013760 \ln \relax (2)^{6}-58720256 \ln \relax (2)^{10}\right ) x^{9}+\left (-428925424128+30787381248 \ln \relax (2)^{2}+1509285888 \ln \relax (2)^{4}-1481146368 \ln \relax (2)^{6}+416415744 \ln \relax (2)^{8}\right ) x^{10}+\left (-306315707904+21800583168 \ln \relax (2)^{2}+1035288576 \ln \relax (2)^{4}-650280960 \ln \relax (2)^{6}+66846720 \ln \relax (2)^{8}\right ) x^{11}+\left (-172237083200+12145569280 \ln \relax (2)^{2}+543095808 \ln \relax (2)^{4}-195067904 \ln \relax (2)^{6}+4587520 \ln \relax (2)^{8}\right ) x^{12}+\left (-76497326976+5333389824 \ln \relax (2)^{2}+215608320 \ln \relax (2)^{4}-38240256 \ln \relax (2)^{6}\right ) x^{13}+\left (-26740476576+1836484224 \ln \relax (2)^{2}+63682560 \ln \relax (2)^{4}-4423680 \ln \relax (2)^{6}\right ) x^{14}+234881024 \ln \relax (2)^{6}+x^{24}+36 x^{23}+618 x^{22}+7516192768 \ln \relax (2)^{12}+\left (-7275160928+489273600 \ln \relax (2)^{2}+13569024 \ln \relax (2)^{4}-229376 \ln \relax (2)^{6}\right ) x^{15}+\left (-1507900095+98359680 \ln \relax (2)^{2}+1972224 \ln \relax (2)^{4}\right ) x^{16}+\left (-229150908+14264448 \ln \relax (2)^{2}+175104 \ln \relax (2)^{4}\right ) x^{17}+\left (-23693942+1366400 \ln \relax (2)^{2}+7168 \ln \relax (2)^{4}\right ) x^{18}+\left (-1366512+68736 \ln \relax (2)^{2}\right ) x^{19}+8589934592 \ln \relax (2)^{14}+3758096384 \ln \relax (2)^{10}+4294967296 \ln \relax (2)^{16}}{x^{4} \left (2+x \right )^{16}}\) \(683\)
risch \(x^{4}-128 x \ln \relax (2)^{2}+4 x^{3}+10 x^{2}+16 x +\frac {65536+29360128 \ln \relax (2)^{4}+1174405120 \ln \relax (2)^{8}+2097152 \ln \relax (2)^{2}+\left (188743680 \ln \relax (2)^{4}+3019898880 \ln \relax (2)^{8}+18874368 \ln \relax (2)^{2}+1006632960 \ln \relax (2)^{6}+3221225472 \ln \relax (2)^{12}+786432+4831838208 \ln \relax (2)^{10}\right ) x +\left (585105408 \ln \relax (2)^{4}+3422552064 \ln \relax (2)^{8}+83361792 \ln \relax (2)^{2}+2038431744 \ln \relax (2)^{6}-4831838208 \ln \relax (2)^{12}+4718592-6442450944 \ln \relax (2)^{14}+1207959552 \ln \relax (2)^{10}\right ) x^{2}+\left (1145044992 \ln \relax (2)^{4}+2449473536 \ln \relax (2)^{8}+236978176 \ln \relax (2)^{2}+2575302656 \ln \relax (2)^{6}+1073741824 \ln \relax (2)^{12}+18743296-2147483648 \ln \relax (2)^{14}+805306368 \ln \relax (2)^{10}\right ) x^{3}+234881024 \ln \relax (2)^{6}+\left (5838471168 \ln \relax (2)^{12}+301989888 \ln \relax (2)^{10}+1245708288 \ln \relax (2)^{8}+2202009600 \ln \relax (2)^{6}+1568931840 \ln \relax (2)^{4}+460980224 \ln \relax (2)^{2}+53854208\right ) x^{4}+\left (3019898880 \ln \relax (2)^{12}-3321888768 \ln \relax (2)^{10}+1056964608 \ln \relax (2)^{8}+1132462080 \ln \relax (2)^{6}+1625554944 \ln \relax (2)^{4}+580780032 \ln \relax (2)^{2}+116097024\right ) x^{5}+\left (469762048 \ln \relax (2)^{12}-4504682496 \ln \relax (2)^{10}+2422210560 \ln \relax (2)^{8}-277872640 \ln \relax (2)^{6}+1457258496 \ln \relax (2)^{4}+317685760 \ln \relax (2)^{2}+191930368\right ) x^{6}+\left (-2415919104 \ln \relax (2)^{10}+3567255552 \ln \relax (2)^{8}-1689255936 \ln \relax (2)^{6}+1413218304 \ln \relax (2)^{4}-414908416 \ln \relax (2)^{2}+247390208\right ) x^{7}+\left (-603979776 \ln \relax (2)^{10}+2938503168 \ln \relax (2)^{8}-2516189184 \ln \relax (2)^{6}+1587953664 \ln \relax (2)^{4}-1285300224 \ln \relax (2)^{2}+251856384\right ) x^{8}+\left (-58720256 \ln \relax (2)^{10}+1434189824 \ln \relax (2)^{8}-2337013760 \ln \relax (2)^{6}+1709424640 \ln \relax (2)^{4}-1774755840 \ln \relax (2)^{2}+204419072\right ) x^{9}+\left (416415744 \ln \relax (2)^{8}-1481146368 \ln \relax (2)^{6}+1509285888 \ln \relax (2)^{4}-1655560192 \ln \relax (2)^{2}+133033472\right ) x^{10}+\left (66846720 \ln \relax (2)^{8}-650280960 \ln \relax (2)^{6}+1035288576 \ln \relax (2)^{4}-1141211136 \ln \relax (2)^{2}+69548544\right ) x^{11}+\left (4587520 \ln \relax (2)^{8}-195067904 \ln \relax (2)^{6}+543095808 \ln \relax (2)^{4}-599872000 \ln \relax (2)^{2}+29142464\right ) x^{12}+\left (-38240256 \ln \relax (2)^{6}+215608320 \ln \relax (2)^{4}-242740736 \ln \relax (2)^{2}+9718912\right ) x^{13}+\left (-4423680 \ln \relax (2)^{6}+63682560 \ln \relax (2)^{4}-75331968 \ln \relax (2)^{2}+2546016\right ) x^{14}+\left (-229376 \ln \relax (2)^{6}+13569024 \ln \relax (2)^{4}-17647360 \ln \relax (2)^{2}+512672\right ) x^{15}+\left (1972224 \ln \relax (2)^{4}-3024512 \ln \relax (2)^{2}+76609\right ) x^{16}+\left (175104 \ln \relax (2)^{4}-358272 \ln \relax (2)^{2}+8004\right ) x^{17}+\left (7168 \ln \relax (2)^{4}-26240 \ln \relax (2)^{2}+522\right ) x^{18}+\left (-896 \ln \relax (2)^{2}+16\right ) x^{19}+7516192768 \ln \relax (2)^{12}+8589934592 \ln \relax (2)^{14}+3758096384 \ln \relax (2)^{10}+4294967296 \ln \relax (2)^{16}}{x^{4} \left (x^{16}+32 x^{15}+480 x^{14}+4480 x^{13}+29120 x^{12}+139776 x^{11}+512512 x^{10}+1464320 x^{9}+3294720 x^{8}+5857280 x^{7}+8200192 x^{6}+8945664 x^{5}+7454720 x^{4}+4587520 x^{3}+1966080 x^{2}+524288 x +65536\right )}\) \(757\)
default \(16 x +x^{4}+4 x^{3}+10 x^{2}-\frac {4 \left (393216 \ln \relax (2)^{16}+786432 \ln \relax (2)^{14}+651264 \ln \relax (2)^{12}+288768 \ln \relax (2)^{10}+72960 \ln \relax (2)^{8}+9984 \ln \relax (2)^{6}+528 \ln \relax (2)^{4}-24 \ln \relax (2)^{2}-3\right )}{3 x^{3}}+\frac {1048576 \ln \relax (2)^{10} \left (240 \ln \relax (2)^{6}+392 \ln \relax (2)^{4}+236 \ln \relax (2)^{2}+63\right )}{\left (2+x \right )^{9}}+\frac {4194304 \ln \relax (2)^{12} \left (140 \ln \relax (2)^{4}+176 \ln \relax (2)^{2}+57\right )}{\left (2+x \right )^{12}}+\frac {134217728 \ln \relax (2)^{14} \left (5 \ln \relax (2)^{2}+3\right )}{\left (2+x \right )^{14}}+\frac {4194304 \ln \relax (2)^{12} \left (112 \ln \relax (2)^{4}+160 \ln \relax (2)^{2}+75\right )}{\left (2+x \right )^{11}}-\frac {4 \left (-4+432 \ln \relax (2)^{4}+160384 \ln \relax (2)^{8}+8 \ln \relax (2)^{2}+13216 \ln \relax (2)^{6}+2355200 \ln \relax (2)^{12}+3153920 \ln \relax (2)^{14}+869376 \ln \relax (2)^{10}+1671168 \ln \relax (2)^{16}\right )}{x}+\frac {671088640 \ln \relax (2)^{14} \left (\ln \relax (2)^{2}+1\right )}{\left (2+x \right )^{13}}+\frac {524288 \ln \relax (2)^{10} \left (672 \ln \relax (2)^{6}+1040 \ln \relax (2)^{4}+572 \ln \relax (2)^{2}+135\right )}{\left (2+x \right )^{10}}+\frac {8192 \ln \relax (2)^{8} \left (21120 \ln \relax (2)^{8}+35840 \ln \relax (2)^{6}+22880 \ln \relax (2)^{4}+6624 \ln \relax (2)^{2}+1323\right )}{\left (2+x \right )^{8}}-128 x \ln \relax (2)^{2}-\frac {-65536 \ln \relax (2)^{16}-131072 \ln \relax (2)^{14}-114688 \ln \relax (2)^{12}-57344 \ln \relax (2)^{10}-17920 \ln \relax (2)^{8}-3584 \ln \relax (2)^{6}-448 \ln \relax (2)^{4}-32 \ln \relax (2)^{2}-1}{x^{4}}+\frac {536870912 \ln \relax (2)^{16}}{\left (2+x \right )^{15}}+\frac {268435456 \ln \relax (2)^{16}}{\left (2+x \right )^{16}}-\frac {2 \left (-1114112 \ln \relax (2)^{16}-2179072 \ln \relax (2)^{14}-1716224 \ln \relax (2)^{12}-689152 \ln \relax (2)^{10}-146432 \ln \relax (2)^{8}-15040 \ln \relax (2)^{6}-560 \ln \relax (2)^{4}-28 \ln \relax (2)^{2}-5\right )}{x^{2}}+\frac {64 \ln \relax (2)^{4} \left (286720 \ln \relax (2)^{12}+532480 \ln \relax (2)^{10}+387840 \ln \relax (2)^{8}+137216 \ln \relax (2)^{6}+23312 \ln \relax (2)^{4}+1632 \ln \relax (2)^{2}-351\right )}{\left (2+x \right )^{3}}+\frac {65536 \ln \relax (2)^{8} \left (1760 \ln \relax (2)^{8}+3072 \ln \relax (2)^{6}+2044 \ln \relax (2)^{4}+628 \ln \relax (2)^{2}+81\right )}{\left (2+x \right )^{7}}+\frac {2048 \ln \relax (2)^{6} \left (36608 \ln \relax (2)^{10}+65280 \ln \relax (2)^{8}+44800 \ln \relax (2)^{6}+14416 \ln \relax (2)^{4}+2034 \ln \relax (2)^{2}+405\right )}{\left (2+x \right )^{6}}+\frac {2048 \ln \relax (2)^{6} \left (23296 \ln \relax (2)^{10}+42240 \ln \relax (2)^{8}+29696 \ln \relax (2)^{6}+9920 \ln \relax (2)^{4}+1506 \ln \relax (2)^{2}-27\right )}{\left (2+x \right )^{5}}+\frac {64 \ln \relax (2)^{4} \left (465920 \ln \relax (2)^{12}+856064 \ln \relax (2)^{10}+613632 \ln \relax (2)^{8}+211456 \ln \relax (2)^{6}+34120 \ln \relax (2)^{4}+2160 \ln \relax (2)^{2}+513\right )}{\left (2+x \right )^{4}}+\frac {8 \ln \relax (2)^{2} \left (1392640 \ln \relax (2)^{14}+2609152 \ln \relax (2)^{12}+1926144 \ln \relax (2)^{10}+697088 \ln \relax (2)^{8}+123776 \ln \relax (2)^{6}+9456 \ln \relax (2)^{4}+1188 \ln \relax (2)^{2}+81\right )}{\left (2+x \right )^{2}}+\frac {32 \ln \relax (2)^{2} \left (208896 \ln \relax (2)^{14}+394240 \ln \relax (2)^{12}+294400 \ln \relax (2)^{10}+108672 \ln \relax (2)^{8}+20048 \ln \relax (2)^{6}+1652 \ln \relax (2)^{4}+54 \ln \relax (2)^{2}-27\right )}{2+x}\) \(783\)
gosper \(\frac {65536+786432 x +585105408 x^{2} \ln \relax (2)^{4}+1145044992 x^{3} \ln \relax (2)^{4}+1457258496 x^{6} \ln \relax (2)^{4}+1434189824 x^{9} \ln \relax (2)^{8}+1625554944 x^{5} \ln \relax (2)^{4}+8303640576 x^{6} \ln \relax (2)^{2}+1709424640 x^{9} \ln \relax (2)^{4}-1366512 x^{19}-23693942 x^{18}-2516189184 x^{8} \ln \relax (2)^{6}-229150908 x^{17}-76497326976 x^{13}-26740476576 x^{14}-172237083200 x^{12}-306315707904 x^{11}-1507900095 x^{16}-7275160928 x^{15}+29360128 \ln \relax (2)^{4}+1174405120 \ln \relax (2)^{8}-428925424128 x^{10}-467945443328 x^{9}+2097152 \ln \relax (2)^{2}-239881494528 x^{7}-389922421248 x^{8}-3377086464 x^{4}+18743296 x^{3}+4718592 x^{2}-102727245824 x^{6}-27330379776 x^{5}+543095808 x^{12} \ln \relax (2)^{4}+3019898880 x \ln \relax (2)^{8}+1006632960 x \ln \relax (2)^{6}+2719875072 x^{5} \ln \relax (2)^{2}+188743680 x \ln \relax (2)^{4}+1413218304 x^{7} \ln \relax (2)^{4}+18123915264 x^{7} \ln \relax (2)^{2}+729415680 x^{4} \ln \relax (2)^{2}+236978176 x^{3} \ln \relax (2)^{2}+18874368 x \ln \relax (2)^{2}+83361792 x^{2} \ln \relax (2)^{2}+3567255552 x^{7} \ln \relax (2)^{8}+2938503168 x^{8} \ln \relax (2)^{8}+416415744 x^{10} \ln \relax (2)^{8}+1587953664 x^{8} \ln \relax (2)^{4}+234881024 \ln \relax (2)^{6}+x^{24}+36 x^{23}+618 x^{22}+6736 x^{21}-2147483648 \ln \relax (2)^{14} x^{3}-6442450944 \ln \relax (2)^{14} x^{2}+1073741824 \ln \relax (2)^{12} x^{3}-4831838208 \ln \relax (2)^{12} x^{2}+3221225472 \ln \relax (2)^{12} x +1207959552 \ln \relax (2)^{10} x^{2}+4831838208 \ln \relax (2)^{10} x +1568931840 \ln \relax (2)^{4} x^{4}+7516192768 \ln \relax (2)^{12}-128 \ln \relax (2)^{2} x^{21}+7168 \ln \relax (2)^{4} x^{18}-229376 \ln \relax (2)^{6} x^{15}+175104 \ln \relax (2)^{4} x^{17}+68736 \ln \relax (2)^{2} x^{19}+4587520 \ln \relax (2)^{8} x^{12}-4423680 \ln \relax (2)^{6} x^{14}+1972224 \ln \relax (2)^{4} x^{16}+1366400 \ln \relax (2)^{2} x^{18}+66846720 \ln \relax (2)^{8} x^{11}-38240256 \ln \relax (2)^{6} x^{13}+13569024 \ln \relax (2)^{4} x^{15}+14264448 \ln \relax (2)^{2} x^{17}-603979776 \ln \relax (2)^{10} x^{8}-195067904 \ln \relax (2)^{6} x^{12}+63682560 \ln \relax (2)^{4} x^{14}+98359680 \ln \relax (2)^{2} x^{16}-650280960 \ln \relax (2)^{6} x^{11}+215608320 \ln \relax (2)^{4} x^{13}+489273600 \ln \relax (2)^{2} x^{15}-1481146368 \ln \relax (2)^{6} x^{10}+1836484224 \ln \relax (2)^{2} x^{14}-2337013760 \ln \relax (2)^{6} x^{9}+1035288576 \ln \relax (2)^{4} x^{11}+5333389824 \ln \relax (2)^{2} x^{13}+1509285888 \ln \relax (2)^{4} x^{10}+12145569280 \ln \relax (2)^{2} x^{12}-1689255936 \ln \relax (2)^{6} x^{7}+8589934592 \ln \relax (2)^{14}+3758096384 \ln \relax (2)^{10}+1056964608 \ln \relax (2)^{8} x^{5}+1132462080 \ln \relax (2)^{6} x^{5}-58720256 \ln \relax (2)^{10} x^{9}+469762048 \ln \relax (2)^{12} x^{6}+3019898880 \ln \relax (2)^{12} x^{5}-2415919104 \ln \relax (2)^{10} x^{7}+5838471168 \ln \relax (2)^{12} x^{4}-4504682496 \ln \relax (2)^{10} x^{6}-3321888768 \ln \relax (2)^{10} x^{5}+301989888 \ln \relax (2)^{10} x^{4}+2422210560 \ln \relax (2)^{8} x^{6}+805306368 \ln \relax (2)^{10} x^{3}+1245708288 \ln \relax (2)^{8} x^{4}-277872640 \ln \relax (2)^{6} x^{6}+2449473536 \ln \relax (2)^{8} x^{3}+3422552064 \ln \relax (2)^{8} x^{2}+2202009600 \ln \relax (2)^{6} x^{4}+2575302656 \ln \relax (2)^{6} x^{3}+4294967296 \ln \relax (2)^{16}+21800583168 \ln \relax (2)^{2} x^{11}+30787381248 \ln \relax (2)^{2} x^{10}+33912479744 \ln \relax (2)^{2} x^{9}+28662030336 \ln \relax (2)^{2} x^{8}+2038431744 \ln \relax (2)^{6} x^{2}}{x^{4} \left (x^{16}+32 x^{15}+480 x^{14}+4480 x^{13}+29120 x^{12}+139776 x^{11}+512512 x^{10}+1464320 x^{9}+3294720 x^{8}+5857280 x^{7}+8200192 x^{6}+8945664 x^{5}+7454720 x^{4}+4587520 x^{3}+1966080 x^{2}+524288 x +65536\right )}\) \(972\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-524288-6029312*x+1366512*x^20+6392524*x^19+24022348*x^18+73676772*x^17+944780032*x^13+671757312*x^14+104
8039936*x^12+834330624*x^11+186202360*x^16+389319040*x^15+294787072*x^10-385378304*x^9-1107525632*x^7-91994112
0*x^8-318636032*x^4-122421248*x^3-33816576*x^2-953286656*x^6-627376128*x^5+(-36700160*x^13-528220160*x^12-3228
303360*x^11-10779099136*x^10-20920139776*x^9-22866296832*x^8-12507414528*x^7-6165626880*x^6-17817403392*x^5-41
641050112*x^4-66504884224*x^3-71068286976*x^2-41607495680*x-9395240960)*ln(2)^8+(1146880*x^16+21495808*x^15+17
9208192*x^14+872218624*x^13+2731442176*x^12+5707530240*x^11+7933394944*x^10+6824132608*x^9+1830813696*x^8-6245
318656*x^7-18098421760*x^6-32967229440*x^5-43780145152*x^4-41842376704*x^3-27279753216*x^2-10737418240*x-18790
48192)*ln(2)^6+(-14336*x^19-324608*x^18-3336192*x^17-20511744*x^16-83576832*x^15-235607040*x^14-463816704*x^13
-628064256*x^12-598818816*x^11-692240384*x^10-1961197568*x^9-5668208640*x^8-11922309120*x^7-18554290176*x^6-21
851799552*x^5-19465764864*x^4-12821987328*x^3-5926551552*x^2-1719664640*x-234881024)*ln(2)^4+(-128*x^22-4352*x
^21-68736*x^20-670720*x^19-4534144*x^18-22563072*x^17-85735680*x^16-254886144*x^15-604044288*x^14-1163537408*x
^13-1876140032*x^12-2665648128*x^11-3588702208*x^10-4819566592*x^9-6314655744*x^8-7507476480*x^7-7583563776*x^
6-6230900736*x^5-4028628992*x^4-1974468608*x^3-692060160*x^2-155189248*x-16777216)*ln(2)^2+(-85899345920*x-343
59738368)*ln(2)^16+(36507222016*x^4+120259084288*x^3+25769803776*x^2-171798691840*x-68719476736)*ln(2)^14+(-65
76668672*x^7-43419435008*x^6-87375740928*x^5-18253611008*x^4+84825604096*x^3-41875931136*x^2-169651208192*x-60
129542144)*ln(2)^12+(645922816*x^10+6660554752*x^9+26575110144*x^8+48570040320*x^7+31809601536*x^6-11475615744
*x^5-13690208256*x^4-23353884672*x^3-96636764160*x^2-104152956928*x-30064771072)*ln(2)^10+4*x^25+148*x^24+2604
*x^23+28984*x^22+229024*x^21)/(x^22+34*x^21+544*x^20+5440*x^19+38080*x^18+198016*x^17+792064*x^16+2489344*x^15
+6223360*x^14+12446720*x^13+19914752*x^12+25346048*x^11+25346048*x^10+19496960*x^9+11141120*x^8+4456448*x^7+11
14112*x^6+131072*x^5),x,method=_RETURNVERBOSE)

[Out]

(65536+29360128*ln(2)^4+1174405120*ln(2)^8+2097152*ln(2)^2+(188743680*ln(2)^4+3019898880*ln(2)^8+18874368*ln(2
)^2+1006632960*ln(2)^6+3221225472*ln(2)^12+786432+4831838208*ln(2)^10)*x+(585105408*ln(2)^4+3422552064*ln(2)^8
+83361792*ln(2)^2+2038431744*ln(2)^6-4831838208*ln(2)^12+4718592-6442450944*ln(2)^14+1207959552*ln(2)^10)*x^2+
(1145044992*ln(2)^4+2449473536*ln(2)^8+236978176*ln(2)^2+2575302656*ln(2)^6+1073741824*ln(2)^12+18743296-21474
83648*ln(2)^14+805306368*ln(2)^10)*x^3+(6736-128*ln(2)^2)*x^21+(1568931840*ln(2)^4+1245708288*ln(2)^8+72941568
0*ln(2)^2+2202009600*ln(2)^6+5838471168*ln(2)^12-3377086464+301989888*ln(2)^10)*x^4+(1625554944*ln(2)^4+105696
4608*ln(2)^8+2719875072*ln(2)^2+1132462080*ln(2)^6+3019898880*ln(2)^12-27330379776-3321888768*ln(2)^10)*x^5+(1
457258496*ln(2)^4+2422210560*ln(2)^8+8303640576*ln(2)^2-277872640*ln(2)^6+469762048*ln(2)^12-102727245824-4504
682496*ln(2)^10)*x^6+(1413218304*ln(2)^4+3567255552*ln(2)^8+18123915264*ln(2)^2-1689255936*ln(2)^6-23988149452
8-2415919104*ln(2)^10)*x^7+(-389922421248+1587953664*ln(2)^4+2938503168*ln(2)^8+28662030336*ln(2)^2-2516189184
*ln(2)^6-603979776*ln(2)^10)*x^8+(-467945443328+1709424640*ln(2)^4+1434189824*ln(2)^8+33912479744*ln(2)^2-2337
013760*ln(2)^6-58720256*ln(2)^10)*x^9+(-428925424128+30787381248*ln(2)^2+1509285888*ln(2)^4-1481146368*ln(2)^6
+416415744*ln(2)^8)*x^10+(-306315707904+21800583168*ln(2)^2+1035288576*ln(2)^4-650280960*ln(2)^6+66846720*ln(2
)^8)*x^11+(-172237083200+12145569280*ln(2)^2+543095808*ln(2)^4-195067904*ln(2)^6+4587520*ln(2)^8)*x^12+(-76497
326976+5333389824*ln(2)^2+215608320*ln(2)^4-38240256*ln(2)^6)*x^13+(-26740476576+1836484224*ln(2)^2+63682560*l
n(2)^4-4423680*ln(2)^6)*x^14+234881024*ln(2)^6+x^24+36*x^23+618*x^22+7516192768*ln(2)^12+(-7275160928+48927360
0*ln(2)^2+13569024*ln(2)^4-229376*ln(2)^6)*x^15+(-1507900095+98359680*ln(2)^2+1972224*ln(2)^4)*x^16+(-22915090
8+14264448*ln(2)^2+175104*ln(2)^4)*x^17+(-23693942+1366400*ln(2)^2+7168*ln(2)^4)*x^18+(-1366512+68736*ln(2)^2)
*x^19+8589934592*ln(2)^14+3758096384*ln(2)^10+4294967296*ln(2)^16)/x^4/(2+x)^16

________________________________________________________________________________________

maxima [B]  time = 0.44, size = 780, normalized size = 30.00 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-524288-6029312*x-318636032*x^4-122421248*x^3-33816576*x^2-953286656*x^6-627376128*x^5-1107525632*x
^7-919941120*x^8+294787072*x^10-385378304*x^9+389319040*x^15+186202360*x^16+834330624*x^11+1048039936*x^12+944
780032*x^13+671757312*x^14+73676772*x^17+1366512*x^20+6392524*x^19+24022348*x^18+(-128*x^22-4352*x^21-68736*x^
20-670720*x^19-4534144*x^18-22563072*x^17-85735680*x^16-254886144*x^15-604044288*x^14-1163537408*x^13-18761400
32*x^12-2665648128*x^11-3588702208*x^10-4819566592*x^9-6314655744*x^8-7507476480*x^7-7583563776*x^6-6230900736
*x^5-4028628992*x^4-1974468608*x^3-692060160*x^2-155189248*x-16777216)*log(2)^2+(-85899345920*x-34359738368)*l
og(2)^16+(36507222016*x^4+120259084288*x^3+25769803776*x^2-171798691840*x-68719476736)*log(2)^14+(-6576668672*
x^7-43419435008*x^6-87375740928*x^5-18253611008*x^4+84825604096*x^3-41875931136*x^2-169651208192*x-60129542144
)*log(2)^12+(645922816*x^10+6660554752*x^9+26575110144*x^8+48570040320*x^7+31809601536*x^6-11475615744*x^5-136
90208256*x^4-23353884672*x^3-96636764160*x^2-104152956928*x-30064771072)*log(2)^10+(-36700160*x^13-528220160*x
^12-3228303360*x^11-10779099136*x^10-20920139776*x^9-22866296832*x^8-12507414528*x^7-6165626880*x^6-1781740339
2*x^5-41641050112*x^4-66504884224*x^3-71068286976*x^2-41607495680*x-9395240960)*log(2)^8+(1146880*x^16+2149580
8*x^15+179208192*x^14+872218624*x^13+2731442176*x^12+5707530240*x^11+7933394944*x^10+6824132608*x^9+1830813696
*x^8-6245318656*x^7-18098421760*x^6-32967229440*x^5-43780145152*x^4-41842376704*x^3-27279753216*x^2-1073741824
0*x-1879048192)*log(2)^6+(-14336*x^19-324608*x^18-3336192*x^17-20511744*x^16-83576832*x^15-235607040*x^14-4638
16704*x^13-628064256*x^12-598818816*x^11-692240384*x^10-1961197568*x^9-5668208640*x^8-11922309120*x^7-18554290
176*x^6-21851799552*x^5-19465764864*x^4-12821987328*x^3-5926551552*x^2-1719664640*x-234881024)*log(2)^4+4*x^25
+148*x^24+2604*x^23+28984*x^22+229024*x^21)/(x^22+34*x^21+544*x^20+5440*x^19+38080*x^18+198016*x^17+792064*x^1
6+2489344*x^15+6223360*x^14+12446720*x^13+19914752*x^12+25346048*x^11+25346048*x^10+19496960*x^9+11141120*x^8+
4456448*x^7+1114112*x^6+131072*x^5),x, algorithm="maxima")

[Out]

x^4 + 4*x^3 - 16*(8*log(2)^2 - 1)*x + 10*x^2 - (16*(56*log(2)^2 - 1)*x^19 - 2*(3584*log(2)^4 - 13120*log(2)^2
+ 261)*x^18 - 12*(14592*log(2)^4 - 29856*log(2)^2 + 667)*x^17 - (1972224*log(2)^4 - 3024512*log(2)^2 + 76609)*
x^16 + 32*(7168*log(2)^6 - 424032*log(2)^4 + 551480*log(2)^2 - 16021)*x^15 - 4294967296*log(2)^16 + 96*(46080*
log(2)^6 - 663360*log(2)^4 + 784708*log(2)^2 - 26521)*x^14 + 128*(298752*log(2)^6 - 1684440*log(2)^4 + 1896412
*log(2)^2 - 75929)*x^13 - 8589934592*log(2)^14 - 64*(71680*log(2)^8 - 3047936*log(2)^6 + 8485872*log(2)^4 - 93
73000*log(2)^2 + 455351)*x^12 - 1536*(43520*log(2)^8 - 423360*log(2)^6 + 674016*log(2)^4 - 742976*log(2)^2 + 4
5279)*x^11 - 7516192768*log(2)^12 - 512*(813312*log(2)^8 - 2892864*log(2)^6 + 2947824*log(2)^4 - 3233516*log(2
)^2 + 259831)*x^10 + 4096*(14336*log(2)^10 - 350144*log(2)^8 + 570560*log(2)^6 - 417340*log(2)^4 + 433290*log(
2)^2 - 49907)*x^9 - 3758096384*log(2)^10 + 1536*(393216*log(2)^10 - 1913088*log(2)^8 + 1638144*log(2)^6 - 1033
824*log(2)^4 + 836784*log(2)^2 - 163969)*x^8 + 8192*(294912*log(2)^10 - 435456*log(2)^8 + 206208*log(2)^6 - 17
2512*log(2)^4 + 50648*log(2)^2 - 30199)*x^7 - 1174405120*log(2)^8 - 8192*(57344*log(2)^12 - 549888*log(2)^10 +
 295680*log(2)^8 - 33920*log(2)^6 + 177888*log(2)^4 + 38780*log(2)^2 + 23429)*x^6 - 98304*(30720*log(2)^12 - 3
3792*log(2)^10 + 10752*log(2)^8 + 11520*log(2)^6 + 16536*log(2)^4 + 5908*log(2)^2 + 1181)*x^5 - 234881024*log(
2)^6 - 16384*(356352*log(2)^12 + 18432*log(2)^10 + 76032*log(2)^8 + 134400*log(2)^6 + 95760*log(2)^4 + 28136*l
og(2)^2 + 3287)*x^4 + 131072*(16384*log(2)^14 - 8192*log(2)^12 - 6144*log(2)^10 - 18688*log(2)^8 - 19648*log(2
)^6 - 8736*log(2)^4 - 1808*log(2)^2 - 143)*x^3 - 29360128*log(2)^4 + 1572864*(4096*log(2)^14 + 3072*log(2)^12
- 768*log(2)^10 - 2176*log(2)^8 - 1296*log(2)^6 - 372*log(2)^4 - 53*log(2)^2 - 3)*x^2 - 786432*(4096*log(2)^12
 + 6144*log(2)^10 + 3840*log(2)^8 + 1280*log(2)^6 + 240*log(2)^4 + 24*log(2)^2 + 1)*x - 2097152*log(2)^2 - 655
36)/(x^20 + 32*x^19 + 480*x^18 + 4480*x^17 + 29120*x^16 + 139776*x^15 + 512512*x^14 + 1464320*x^13 + 3294720*x
^12 + 5857280*x^11 + 8200192*x^10 + 8945664*x^9 + 7454720*x^8 + 4587520*x^7 + 1966080*x^6 + 524288*x^5 + 65536
*x^4)

________________________________________________________________________________________

mupad [B]  time = 4.00, size = 767, normalized size = 29.50 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(2)^6*(1830813696*x^8 - 27279753216*x^2 - 41842376704*x^3 - 43780145152*x^4 - 32967229440*x^5 - 180984
21760*x^6 - 6245318656*x^7 - 10737418240*x + 6824132608*x^9 + 7933394944*x^10 + 5707530240*x^11 + 2731442176*x
^12 + 872218624*x^13 + 179208192*x^14 + 21495808*x^15 + 1146880*x^16 - 1879048192) - log(2)^4*(1719664640*x +
5926551552*x^2 + 12821987328*x^3 + 19465764864*x^4 + 21851799552*x^5 + 18554290176*x^6 + 11922309120*x^7 + 566
8208640*x^8 + 1961197568*x^9 + 692240384*x^10 + 598818816*x^11 + 628064256*x^12 + 463816704*x^13 + 235607040*x
^14 + 83576832*x^15 + 20511744*x^16 + 3336192*x^17 + 324608*x^18 + 14336*x^19 + 234881024) - 6029312*x - log(2
)^16*(85899345920*x + 34359738368) - log(2)^2*(155189248*x + 692060160*x^2 + 1974468608*x^3 + 4028628992*x^4 +
 6230900736*x^5 + 7583563776*x^6 + 7507476480*x^7 + 6314655744*x^8 + 4819566592*x^9 + 3588702208*x^10 + 266564
8128*x^11 + 1876140032*x^12 + 1163537408*x^13 + 604044288*x^14 + 254886144*x^15 + 85735680*x^16 + 22563072*x^1
7 + 4534144*x^18 + 670720*x^19 + 68736*x^20 + 4352*x^21 + 128*x^22 + 16777216) + log(2)^14*(25769803776*x^2 -
171798691840*x + 120259084288*x^3 + 36507222016*x^4 - 68719476736) - log(2)^8*(41607495680*x + 71068286976*x^2
 + 66504884224*x^3 + 41641050112*x^4 + 17817403392*x^5 + 6165626880*x^6 + 12507414528*x^7 + 22866296832*x^8 +
20920139776*x^9 + 10779099136*x^10 + 3228303360*x^11 + 528220160*x^12 + 36700160*x^13 + 9395240960) - 33816576
*x^2 - 122421248*x^3 - 318636032*x^4 - 627376128*x^5 - 953286656*x^6 - 1107525632*x^7 - 919941120*x^8 - 385378
304*x^9 + 294787072*x^10 + 834330624*x^11 + 1048039936*x^12 + 944780032*x^13 + 671757312*x^14 + 389319040*x^15
 + 186202360*x^16 + 73676772*x^17 + 24022348*x^18 + 6392524*x^19 + 1366512*x^20 + 229024*x^21 + 28984*x^22 + 2
604*x^23 + 148*x^24 + 4*x^25 - log(2)^12*(169651208192*x + 41875931136*x^2 - 84825604096*x^3 + 18253611008*x^4
 + 87375740928*x^5 + 43419435008*x^6 + 6576668672*x^7 + 60129542144) - log(2)^10*(104152956928*x + 96636764160
*x^2 + 23353884672*x^3 + 13690208256*x^4 + 11475615744*x^5 - 31809601536*x^6 - 48570040320*x^7 - 26575110144*x
^8 - 6660554752*x^9 - 645922816*x^10 + 30064771072) - 524288)/(131072*x^5 + 1114112*x^6 + 4456448*x^7 + 111411
20*x^8 + 19496960*x^9 + 25346048*x^10 + 25346048*x^11 + 19914752*x^12 + 12446720*x^13 + 6223360*x^14 + 2489344
*x^15 + 792064*x^16 + 198016*x^17 + 38080*x^18 + 5440*x^19 + 544*x^20 + 34*x^21 + x^22),x)

[Out]

(x*(18874368*log(2)^2 + 188743680*log(2)^4 + 1006632960*log(2)^6 + 3019898880*log(2)^8 + 4831838208*log(2)^10
+ 3221225472*log(2)^12 + 786432) - x^15*(17647360*log(2)^2 - 13569024*log(2)^4 + 229376*log(2)^6 - 512672) + x
^2*(83361792*log(2)^2 + 585105408*log(2)^4 + 2038431744*log(2)^6 + 3422552064*log(2)^8 + 1207959552*log(2)^10
- 4831838208*log(2)^12 - 6442450944*log(2)^14 + 4718592) - x^14*(75331968*log(2)^2 - 63682560*log(2)^4 + 44236
80*log(2)^6 - 2546016) + x^5*(580780032*log(2)^2 + 1625554944*log(2)^4 + 1132462080*log(2)^6 + 1056964608*log(
2)^8 - 3321888768*log(2)^10 + 3019898880*log(2)^12 + 116097024) - x^9*(1774755840*log(2)^2 - 1709424640*log(2)
^4 + 2337013760*log(2)^6 - 1434189824*log(2)^8 + 58720256*log(2)^10 - 204419072) + x^3*(236978176*log(2)^2 + 1
145044992*log(2)^4 + 2575302656*log(2)^6 + 2449473536*log(2)^8 + 805306368*log(2)^10 + 1073741824*log(2)^12 -
2147483648*log(2)^14 + 18743296) - x^13*(242740736*log(2)^2 - 215608320*log(2)^4 + 38240256*log(2)^6 - 9718912
) + x^4*(460980224*log(2)^2 + 1568931840*log(2)^4 + 2202009600*log(2)^6 + 1245708288*log(2)^8 + 301989888*log(
2)^10 + 5838471168*log(2)^12 + 53854208) + x^10*(1509285888*log(2)^4 - 1655560192*log(2)^2 - 1481146368*log(2)
^6 + 416415744*log(2)^8 + 133033472) - x^8*(1285300224*log(2)^2 - 1587953664*log(2)^4 + 2516189184*log(2)^6 -
2938503168*log(2)^8 + 603979776*log(2)^10 - 251856384) + x^12*(543095808*log(2)^4 - 599872000*log(2)^2 - 19506
7904*log(2)^6 + 4587520*log(2)^8 + 29142464) - x^7*(414908416*log(2)^2 - 1413218304*log(2)^4 + 1689255936*log(
2)^6 - 3567255552*log(2)^8 + 2415919104*log(2)^10 - 247390208) - x^19*(896*log(2)^2 - 16) + 2097152*log(2)^2 +
 29360128*log(2)^4 + 234881024*log(2)^6 + 1174405120*log(2)^8 + 3758096384*log(2)^10 + 7516192768*log(2)^12 +
8589934592*log(2)^14 + 4294967296*log(2)^16 + x^6*(317685760*log(2)^2 + 1457258496*log(2)^4 - 277872640*log(2)
^6 + 2422210560*log(2)^8 - 4504682496*log(2)^10 + 469762048*log(2)^12 + 191930368) + x^18*(7168*log(2)^4 - 262
40*log(2)^2 + 522) + x^17*(175104*log(2)^4 - 358272*log(2)^2 + 8004) + x^16*(1972224*log(2)^4 - 3024512*log(2)
^2 + 76609) + x^11*(1035288576*log(2)^4 - 1141211136*log(2)^2 - 650280960*log(2)^6 + 66846720*log(2)^8 + 69548
544) + 65536)/(65536*x^4 + 524288*x^5 + 1966080*x^6 + 4587520*x^7 + 7454720*x^8 + 8945664*x^9 + 8200192*x^10 +
 5857280*x^11 + 3294720*x^12 + 1464320*x^13 + 512512*x^14 + 139776*x^15 + 29120*x^16 + 4480*x^17 + 480*x^18 +
32*x^19 + x^20) - x*(128*log(2)^2 - 16) + 10*x^2 + 4*x^3 + x^4

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-524288-6029312*x-318636032*x**4-122421248*x**3-33816576*x**2-953286656*x**6-627376128*x**5-1107525
632*x**7-919941120*x**8+294787072*x**10-385378304*x**9+389319040*x**15+186202360*x**16+834330624*x**11+1048039
936*x**12+944780032*x**13+671757312*x**14+73676772*x**17+1366512*x**20+6392524*x**19+24022348*x**18+(-128*x**2
2-4352*x**21-68736*x**20-670720*x**19-4534144*x**18-22563072*x**17-85735680*x**16-254886144*x**15-604044288*x*
*14-1163537408*x**13-1876140032*x**12-2665648128*x**11-3588702208*x**10-4819566592*x**9-6314655744*x**8-750747
6480*x**7-7583563776*x**6-6230900736*x**5-4028628992*x**4-1974468608*x**3-692060160*x**2-155189248*x-16777216)
*ln(2)**2+(-85899345920*x-34359738368)*ln(2)**16+(36507222016*x**4+120259084288*x**3+25769803776*x**2-17179869
1840*x-68719476736)*ln(2)**14+(-6576668672*x**7-43419435008*x**6-87375740928*x**5-18253611008*x**4+84825604096
*x**3-41875931136*x**2-169651208192*x-60129542144)*ln(2)**12+(645922816*x**10+6660554752*x**9+26575110144*x**8
+48570040320*x**7+31809601536*x**6-11475615744*x**5-13690208256*x**4-23353884672*x**3-96636764160*x**2-1041529
56928*x-30064771072)*ln(2)**10+(-36700160*x**13-528220160*x**12-3228303360*x**11-10779099136*x**10-20920139776
*x**9-22866296832*x**8-12507414528*x**7-6165626880*x**6-17817403392*x**5-41641050112*x**4-66504884224*x**3-710
68286976*x**2-41607495680*x-9395240960)*ln(2)**8+(1146880*x**16+21495808*x**15+179208192*x**14+872218624*x**13
+2731442176*x**12+5707530240*x**11+7933394944*x**10+6824132608*x**9+1830813696*x**8-6245318656*x**7-1809842176
0*x**6-32967229440*x**5-43780145152*x**4-41842376704*x**3-27279753216*x**2-10737418240*x-1879048192)*ln(2)**6+
(-14336*x**19-324608*x**18-3336192*x**17-20511744*x**16-83576832*x**15-235607040*x**14-463816704*x**13-6280642
56*x**12-598818816*x**11-692240384*x**10-1961197568*x**9-5668208640*x**8-11922309120*x**7-18554290176*x**6-218
51799552*x**5-19465764864*x**4-12821987328*x**3-5926551552*x**2-1719664640*x-234881024)*ln(2)**4+4*x**25+148*x
**24+2604*x**23+28984*x**22+229024*x**21)/(x**22+34*x**21+544*x**20+5440*x**19+38080*x**18+198016*x**17+792064
*x**16+2489344*x**15+6223360*x**14+12446720*x**13+19914752*x**12+25346048*x**11+25346048*x**10+19496960*x**9+1
1141120*x**8+4456448*x**7+1114112*x**6+131072*x**5),x)

[Out]

Timed out

________________________________________________________________________________________