Optimal. Leaf size=23 \[ 2 e^{-2 e^x x} \left (x^2-x^4\right ) \log ^2(x) \]
________________________________________________________________________________________
Rubi [F] time = 4.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-2 e^x x} \left (\left (4 x-4 x^3\right ) \log (x)+\left (4 x-8 x^3+e^x \left (-4 x^2-4 x^3+4 x^4+4 x^5\right )\right ) \log ^2(x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 4 e^{-2 e^x x} x \log (x) \left (1-x^2+\left (1-2 x^2+e^x (-1+x) x (1+x)^2\right ) \log (x)\right ) \, dx\\ &=4 \int e^{-2 e^x x} x \log (x) \left (1-x^2+\left (1-2 x^2+e^x (-1+x) x (1+x)^2\right ) \log (x)\right ) \, dx\\ &=4 \int \left (e^{x-2 e^x x} (-1+x) x^2 (1+x)^2 \log ^2(x)-e^{-2 e^x x} x \log (x) \left (-1+x^2-\log (x)+2 x^2 \log (x)\right )\right ) \, dx\\ &=4 \int e^{x-2 e^x x} (-1+x) x^2 (1+x)^2 \log ^2(x) \, dx-4 \int e^{-2 e^x x} x \log (x) \left (-1+x^2-\log (x)+2 x^2 \log (x)\right ) \, dx\\ &=4 \int \left (-e^{x-2 e^x x} x^2 \log ^2(x)-e^{x-2 e^x x} x^3 \log ^2(x)+e^{x-2 e^x x} x^4 \log ^2(x)+e^{x-2 e^x x} x^5 \log ^2(x)\right ) \, dx-4 \int \left (e^{-2 e^x x} x \left (-1+x^2\right ) \log (x)+e^{-2 e^x x} x \left (-1+2 x^2\right ) \log ^2(x)\right ) \, dx\\ &=-\left (4 \int e^{-2 e^x x} x \left (-1+x^2\right ) \log (x) \, dx\right )-4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx-4 \int e^{-2 e^x x} x \left (-1+2 x^2\right ) \log ^2(x) \, dx\\ &=-\left (4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx\right )-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx-4 \int \left (-e^{-2 e^x x} x \log ^2(x)+2 e^{-2 e^x x} x^3 \log ^2(x)\right ) \, dx+4 \int \frac {-\int e^{-2 e^x x} x \, dx+\int e^{-2 e^x x} x^3 \, dx}{x} \, dx+(4 \log (x)) \int e^{-2 e^x x} x \, dx-(4 \log (x)) \int e^{-2 e^x x} x^3 \, dx\\ &=4 \int e^{-2 e^x x} x \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx+4 \int \left (-\frac {\int e^{-2 e^x x} x \, dx}{x}+\frac {\int e^{-2 e^x x} x^3 \, dx}{x}\right ) \, dx-8 \int e^{-2 e^x x} x^3 \log ^2(x) \, dx+(4 \log (x)) \int e^{-2 e^x x} x \, dx-(4 \log (x)) \int e^{-2 e^x x} x^3 \, dx\\ &=4 \int e^{-2 e^x x} x \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx-4 \int \frac {\int e^{-2 e^x x} x \, dx}{x} \, dx+4 \int \frac {\int e^{-2 e^x x} x^3 \, dx}{x} \, dx-8 \int e^{-2 e^x x} x^3 \log ^2(x) \, dx+(4 \log (x)) \int e^{-2 e^x x} x \, dx-(4 \log (x)) \int e^{-2 e^x x} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.74, size = 22, normalized size = 0.96 \begin {gather*} -2 e^{-2 e^x x} x^2 \left (-1+x^2\right ) \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 21, normalized size = 0.91 \begin {gather*} -2 \, {\left (x^{4} - x^{2}\right )} e^{\left (-2 \, x e^{x}\right )} \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 40, normalized size = 1.74 \begin {gather*} -2 \, {\left (x^{4} e^{\left (-2 \, x e^{x} + x\right )} \log \relax (x)^{2} - x^{2} e^{\left (-2 \, x e^{x} + x\right )} \log \relax (x)^{2}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.91
method | result | size |
risch | \(-2 \ln \relax (x )^{2} \left (x^{2}-1\right ) x^{2} {\mathrm e}^{-2 \,{\mathrm e}^{x} x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 21, normalized size = 0.91 \begin {gather*} -2 \, {\left (x^{4} - x^{2}\right )} e^{\left (-2 \, x e^{x}\right )} \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -{\mathrm {e}}^{-2\,x\,{\mathrm {e}}^x}\,\left ({\ln \relax (x)}^2\,\left ({\mathrm {e}}^x\,\left (-4\,x^5-4\,x^4+4\,x^3+4\,x^2\right )-4\,x+8\,x^3\right )-\ln \relax (x)\,\left (4\,x-4\,x^3\right )\right ) \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.08, size = 27, normalized size = 1.17 \begin {gather*} \left (- 2 x^{4} \log {\relax (x )}^{2} + 2 x^{2} \log {\relax (x )}^{2}\right ) e^{- 2 x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________