3.57.5 \(\int e^{-2 e^x x} ((4 x-4 x^3) \log (x)+(4 x-8 x^3+e^x (-4 x^2-4 x^3+4 x^4+4 x^5)) \log ^2(x)) \, dx\)

Optimal. Leaf size=23 \[ 2 e^{-2 e^x x} \left (x^2-x^4\right ) \log ^2(x) \]

________________________________________________________________________________________

Rubi [F]  time = 4.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-2 e^x x} \left (\left (4 x-4 x^3\right ) \log (x)+\left (4 x-8 x^3+e^x \left (-4 x^2-4 x^3+4 x^4+4 x^5\right )\right ) \log ^2(x)\right ) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[((4*x - 4*x^3)*Log[x] + (4*x - 8*x^3 + E^x*(-4*x^2 - 4*x^3 + 4*x^4 + 4*x^5))*Log[x]^2)/E^(2*E^x*x),x]

[Out]

4*Log[x]*Defer[Int][x/E^(2*E^x*x), x] - 4*Log[x]*Defer[Int][x^3/E^(2*E^x*x), x] + 4*Defer[Int][(x*Log[x]^2)/E^
(2*E^x*x), x] - 4*Defer[Int][E^(x - 2*E^x*x)*x^2*Log[x]^2, x] - 8*Defer[Int][(x^3*Log[x]^2)/E^(2*E^x*x), x] -
4*Defer[Int][E^(x - 2*E^x*x)*x^3*Log[x]^2, x] + 4*Defer[Int][E^(x - 2*E^x*x)*x^4*Log[x]^2, x] + 4*Defer[Int][E
^(x - 2*E^x*x)*x^5*Log[x]^2, x] - 4*Defer[Int][Defer[Int][x/E^(2*E^x*x), x]/x, x] + 4*Defer[Int][Defer[Int][x^
3/E^(2*E^x*x), x]/x, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int 4 e^{-2 e^x x} x \log (x) \left (1-x^2+\left (1-2 x^2+e^x (-1+x) x (1+x)^2\right ) \log (x)\right ) \, dx\\ &=4 \int e^{-2 e^x x} x \log (x) \left (1-x^2+\left (1-2 x^2+e^x (-1+x) x (1+x)^2\right ) \log (x)\right ) \, dx\\ &=4 \int \left (e^{x-2 e^x x} (-1+x) x^2 (1+x)^2 \log ^2(x)-e^{-2 e^x x} x \log (x) \left (-1+x^2-\log (x)+2 x^2 \log (x)\right )\right ) \, dx\\ &=4 \int e^{x-2 e^x x} (-1+x) x^2 (1+x)^2 \log ^2(x) \, dx-4 \int e^{-2 e^x x} x \log (x) \left (-1+x^2-\log (x)+2 x^2 \log (x)\right ) \, dx\\ &=4 \int \left (-e^{x-2 e^x x} x^2 \log ^2(x)-e^{x-2 e^x x} x^3 \log ^2(x)+e^{x-2 e^x x} x^4 \log ^2(x)+e^{x-2 e^x x} x^5 \log ^2(x)\right ) \, dx-4 \int \left (e^{-2 e^x x} x \left (-1+x^2\right ) \log (x)+e^{-2 e^x x} x \left (-1+2 x^2\right ) \log ^2(x)\right ) \, dx\\ &=-\left (4 \int e^{-2 e^x x} x \left (-1+x^2\right ) \log (x) \, dx\right )-4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx-4 \int e^{-2 e^x x} x \left (-1+2 x^2\right ) \log ^2(x) \, dx\\ &=-\left (4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx\right )-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx-4 \int \left (-e^{-2 e^x x} x \log ^2(x)+2 e^{-2 e^x x} x^3 \log ^2(x)\right ) \, dx+4 \int \frac {-\int e^{-2 e^x x} x \, dx+\int e^{-2 e^x x} x^3 \, dx}{x} \, dx+(4 \log (x)) \int e^{-2 e^x x} x \, dx-(4 \log (x)) \int e^{-2 e^x x} x^3 \, dx\\ &=4 \int e^{-2 e^x x} x \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx+4 \int \left (-\frac {\int e^{-2 e^x x} x \, dx}{x}+\frac {\int e^{-2 e^x x} x^3 \, dx}{x}\right ) \, dx-8 \int e^{-2 e^x x} x^3 \log ^2(x) \, dx+(4 \log (x)) \int e^{-2 e^x x} x \, dx-(4 \log (x)) \int e^{-2 e^x x} x^3 \, dx\\ &=4 \int e^{-2 e^x x} x \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^2 \log ^2(x) \, dx-4 \int e^{x-2 e^x x} x^3 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^4 \log ^2(x) \, dx+4 \int e^{x-2 e^x x} x^5 \log ^2(x) \, dx-4 \int \frac {\int e^{-2 e^x x} x \, dx}{x} \, dx+4 \int \frac {\int e^{-2 e^x x} x^3 \, dx}{x} \, dx-8 \int e^{-2 e^x x} x^3 \log ^2(x) \, dx+(4 \log (x)) \int e^{-2 e^x x} x \, dx-(4 \log (x)) \int e^{-2 e^x x} x^3 \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.74, size = 22, normalized size = 0.96 \begin {gather*} -2 e^{-2 e^x x} x^2 \left (-1+x^2\right ) \log ^2(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((4*x - 4*x^3)*Log[x] + (4*x - 8*x^3 + E^x*(-4*x^2 - 4*x^3 + 4*x^4 + 4*x^5))*Log[x]^2)/E^(2*E^x*x),x
]

[Out]

(-2*x^2*(-1 + x^2)*Log[x]^2)/E^(2*E^x*x)

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 21, normalized size = 0.91 \begin {gather*} -2 \, {\left (x^{4} - x^{2}\right )} e^{\left (-2 \, x e^{x}\right )} \log \relax (x)^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x^5+4*x^4-4*x^3-4*x^2)*exp(x)-8*x^3+4*x)*log(x)^2+(-4*x^3+4*x)*log(x))/exp(exp(x)*x)^2,x, algor
ithm="fricas")

[Out]

-2*(x^4 - x^2)*e^(-2*x*e^x)*log(x)^2

________________________________________________________________________________________

giac [A]  time = 0.18, size = 40, normalized size = 1.74 \begin {gather*} -2 \, {\left (x^{4} e^{\left (-2 \, x e^{x} + x\right )} \log \relax (x)^{2} - x^{2} e^{\left (-2 \, x e^{x} + x\right )} \log \relax (x)^{2}\right )} e^{\left (-x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x^5+4*x^4-4*x^3-4*x^2)*exp(x)-8*x^3+4*x)*log(x)^2+(-4*x^3+4*x)*log(x))/exp(exp(x)*x)^2,x, algor
ithm="giac")

[Out]

-2*(x^4*e^(-2*x*e^x + x)*log(x)^2 - x^2*e^(-2*x*e^x + x)*log(x)^2)*e^(-x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 21, normalized size = 0.91




method result size



risch \(-2 \ln \relax (x )^{2} \left (x^{2}-1\right ) x^{2} {\mathrm e}^{-2 \,{\mathrm e}^{x} x}\) \(21\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((4*x^5+4*x^4-4*x^3-4*x^2)*exp(x)-8*x^3+4*x)*ln(x)^2+(-4*x^3+4*x)*ln(x))/exp(exp(x)*x)^2,x,method=_RETURN
VERBOSE)

[Out]

-2*ln(x)^2*(x^2-1)*x^2*exp(-2*exp(x)*x)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 21, normalized size = 0.91 \begin {gather*} -2 \, {\left (x^{4} - x^{2}\right )} e^{\left (-2 \, x e^{x}\right )} \log \relax (x)^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x^5+4*x^4-4*x^3-4*x^2)*exp(x)-8*x^3+4*x)*log(x)^2+(-4*x^3+4*x)*log(x))/exp(exp(x)*x)^2,x, algor
ithm="maxima")

[Out]

-2*(x^4 - x^2)*e^(-2*x*e^x)*log(x)^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -{\mathrm {e}}^{-2\,x\,{\mathrm {e}}^x}\,\left ({\ln \relax (x)}^2\,\left ({\mathrm {e}}^x\,\left (-4\,x^5-4\,x^4+4\,x^3+4\,x^2\right )-4\,x+8\,x^3\right )-\ln \relax (x)\,\left (4\,x-4\,x^3\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(-2*x*exp(x))*(log(x)^2*(exp(x)*(4*x^2 + 4*x^3 - 4*x^4 - 4*x^5) - 4*x + 8*x^3) - log(x)*(4*x - 4*x^3))
,x)

[Out]

int(-exp(-2*x*exp(x))*(log(x)^2*(exp(x)*(4*x^2 + 4*x^3 - 4*x^4 - 4*x^5) - 4*x + 8*x^3) - log(x)*(4*x - 4*x^3))
, x)

________________________________________________________________________________________

sympy [A]  time = 6.08, size = 27, normalized size = 1.17 \begin {gather*} \left (- 2 x^{4} \log {\relax (x )}^{2} + 2 x^{2} \log {\relax (x )}^{2}\right ) e^{- 2 x e^{x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x**5+4*x**4-4*x**3-4*x**2)*exp(x)-8*x**3+4*x)*ln(x)**2+(-4*x**3+4*x)*ln(x))/exp(exp(x)*x)**2,x)

[Out]

(-2*x**4*log(x)**2 + 2*x**2*log(x)**2)*exp(-2*x*exp(x))

________________________________________________________________________________________