Optimal. Leaf size=23 \[ \frac {x^3 \log (2 x (-2+3 x) \log (x))}{2-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^2+6 x^3+\left (-2 x^2+9 x^3\right ) \log (x)+\left (2 x^2-6 x^3\right ) \log ^2(x)+\left (\left (-14 x^2+21 x^3\right ) \log (x)+\left (6 x^2-9 x^3\right ) \log ^2(x)\right ) \log \left (\left (-4 x+6 x^2\right ) \log (x)\right )}{(-8+12 x) \log (x)+(8-12 x) \log ^2(x)+(-2+3 x) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (4-6 x-\log ^2(x) (2-6 x+(6-9 x) \log (2 x (-2+3 x) \log (x)))-\log (x) (-2+9 x+7 (-2+3 x) \log (2 x (-2+3 x) \log (x)))\right )}{(2-3 x) (2-\log (x))^2 \log (x)} \, dx\\ &=\int \left (-\frac {2 x^2}{(-2+3 x) (-2+\log (x))^2}+\frac {9 x^3}{(-2+3 x) (-2+\log (x))^2}-\frac {4 x^2}{(-2+3 x) (-2+\log (x))^2 \log (x)}+\frac {6 x^3}{(-2+3 x) (-2+\log (x))^2 \log (x)}+\frac {2 x^2 \log (x)}{(-2+3 x) (-2+\log (x))^2}-\frac {6 x^3 \log (x)}{(-2+3 x) (-2+\log (x))^2}-\frac {x^2 (-7+3 \log (x)) \log (2 x (-2+3 x) \log (x))}{(-2+\log (x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{(-2+3 x) (-2+\log (x))^2} \, dx\right )+2 \int \frac {x^2 \log (x)}{(-2+3 x) (-2+\log (x))^2} \, dx-4 \int \frac {x^2}{(-2+3 x) (-2+\log (x))^2 \log (x)} \, dx+6 \int \frac {x^3}{(-2+3 x) (-2+\log (x))^2 \log (x)} \, dx-6 \int \frac {x^3 \log (x)}{(-2+3 x) (-2+\log (x))^2} \, dx+9 \int \frac {x^3}{(-2+3 x) (-2+\log (x))^2} \, dx-\int \frac {x^2 (-7+3 \log (x)) \log (2 x (-2+3 x) \log (x))}{(-2+\log (x))^2} \, dx\\ &=2 \int \left (\frac {2 x^2}{(-2+3 x) (-2+\log (x))^2}+\frac {x^2}{(-2+3 x) (-2+\log (x))}\right ) \, dx-2 \int \frac {x^2}{(-2+3 x) (-2+\log (x))^2} \, dx-4 \int \left (\frac {x^2}{2 (-2+3 x) (-2+\log (x))^2}-\frac {x^2}{4 (-2+3 x) (-2+\log (x))}+\frac {x^2}{4 (-2+3 x) \log (x)}\right ) \, dx-6 \int \left (\frac {2 x^3}{(-2+3 x) (-2+\log (x))^2}+\frac {x^3}{(-2+3 x) (-2+\log (x))}\right ) \, dx+6 \int \left (\frac {x^3}{2 (-2+3 x) (-2+\log (x))^2}-\frac {x^3}{4 (-2+3 x) (-2+\log (x))}+\frac {x^3}{4 (-2+3 x) \log (x)}\right ) \, dx+9 \int \frac {x^3}{(-2+3 x) (-2+\log (x))^2} \, dx-\int \left (-\frac {7 x^2 \log (2 x (-2+3 x) \log (x))}{(-2+\log (x))^2}+\frac {3 x^2 \log (x) \log (2 x (-2+3 x) \log (x))}{(-2+\log (x))^2}\right ) \, dx\\ &=-\left (\frac {3}{2} \int \frac {x^3}{(-2+3 x) (-2+\log (x))} \, dx\right )+\frac {3}{2} \int \frac {x^3}{(-2+3 x) \log (x)} \, dx-2 \left (2 \int \frac {x^2}{(-2+3 x) (-2+\log (x))^2} \, dx\right )+2 \int \frac {x^2}{(-2+3 x) (-2+\log (x))} \, dx+3 \int \frac {x^3}{(-2+3 x) (-2+\log (x))^2} \, dx-3 \int \frac {x^2 \log (x) \log (2 x (-2+3 x) \log (x))}{(-2+\log (x))^2} \, dx+4 \int \frac {x^2}{(-2+3 x) (-2+\log (x))^2} \, dx-6 \int \frac {x^3}{(-2+3 x) (-2+\log (x))} \, dx+7 \int \frac {x^2 \log (2 x (-2+3 x) \log (x))}{(-2+\log (x))^2} \, dx+9 \int \frac {x^3}{(-2+3 x) (-2+\log (x))^2} \, dx-12 \int \frac {x^3}{(-2+3 x) (-2+\log (x))^2} \, dx+\int \frac {x^2}{(-2+3 x) (-2+\log (x))} \, dx-\int \frac {x^2}{(-2+3 x) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 22, normalized size = 0.96 \begin {gather*} -\frac {x^3 \log (2 x (-2+3 x) \log (x))}{-2+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 25, normalized size = 1.09 \begin {gather*} -\frac {x^{3} \log \left (2 \, {\left (3 \, x^{2} - 2 \, x\right )} \log \relax (x)\right )}{\log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 39, normalized size = 1.70 \begin {gather*} -x^{3} - \frac {x^{3} \log \left (6 \, x \log \relax (x) - 4 \, \log \relax (x)\right )}{\log \relax (x) - 2} - \frac {2 \, x^{3}}{\log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.32, size = 220, normalized size = 9.57
method | result | size |
risch | \(-\frac {x^{3} \ln \left (x -\frac {2}{3}\right )}{\ln \relax (x )-2}-\frac {x^{3} \left (i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )^{2}-i \pi \mathrm {csgn}\left (i x \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )^{3}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x -\frac {2}{3}\right )\right ) \mathrm {csgn}\left (i x \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (x -\frac {2}{3}\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )^{2}-i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left (x -\frac {2}{3}\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )+i \pi \,\mathrm {csgn}\left (i \ln \relax (x ) \left (x -\frac {2}{3}\right )\right ) \mathrm {csgn}\left (i x \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )^{2}-i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (x -\frac {2}{3}\right )\right )^{3}+2 \ln \relax (3)+2 \ln \relax (2)+2 \ln \relax (x )+2 \ln \left (\ln \relax (x )\right )\right )}{2 \left (\ln \relax (x )-2\right )}\) | \(220\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 38, normalized size = 1.65 \begin {gather*} -\frac {x^{3} \log \relax (2) + x^{3} \log \left (3 \, x - 2\right ) + x^{3} \log \relax (x) + x^{3} \log \left (\log \relax (x)\right )}{\log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.06, size = 25, normalized size = 1.09 \begin {gather*} -\frac {x^3\,\ln \left (-2\,\ln \relax (x)\,\left (2\,x-3\,x^2\right )\right )}{\ln \relax (x)-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 22, normalized size = 0.96 \begin {gather*} - \frac {x^{3} \log {\left (\left (6 x^{2} - 4 x\right ) \log {\relax (x )} \right )}}{\log {\relax (x )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________