Optimal. Leaf size=26 \[ x-\log (5)-\frac {\log (5)}{x+\left (3 e^2-x\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^3+3 e^2 \log (5)+\left (6 e^2 x^2-2 x^3-x \log (5)\right ) \log (x)+\left (9 e^4 x-6 e^2 x^2+x^3\right ) \log ^2(x)}{x^3+\left (6 e^2 x^2-2 x^3\right ) \log (x)+\left (9 e^4 x-6 e^2 x^2+x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^3+3 e^2 \log (5)-x \left (-6 e^2 x+2 x^2+\log (5)\right ) \log (x)+x \left (-3 e^2+x\right )^2 \log ^2(x)}{x \left (x+\left (3 e^2-x\right ) \log (x)\right )^2} \, dx\\ &=\int \left (1+\frac {\left (9 e^4-3 e^2 x+x^2\right ) \log (5)}{\left (3 e^2-x\right ) x \left (x+3 e^2 \log (x)-x \log (x)\right )^2}-\frac {\log (5)}{\left (3 e^2-x\right ) \left (x+3 e^2 \log (x)-x \log (x)\right )}\right ) \, dx\\ &=x+\log (5) \int \frac {9 e^4-3 e^2 x+x^2}{\left (3 e^2-x\right ) x \left (x+3 e^2 \log (x)-x \log (x)\right )^2} \, dx-\log (5) \int \frac {1}{\left (3 e^2-x\right ) \left (x+3 e^2 \log (x)-x \log (x)\right )} \, dx\\ &=x-\log (5) \int \frac {1}{\left (3 e^2-x\right ) \left (x+3 e^2 \log (x)-x \log (x)\right )} \, dx+\log (5) \int \left (\frac {3 e^2}{\left (3 e^2-x\right ) \left (x+3 e^2 \log (x)-x \log (x)\right )^2}-\frac {1}{\left (-x-3 e^2 \log (x)+x \log (x)\right )^2}+\frac {3 e^2}{x \left (-x-3 e^2 \log (x)+x \log (x)\right )^2}\right ) \, dx\\ &=x-\log (5) \int \frac {1}{\left (3 e^2-x\right ) \left (x+3 e^2 \log (x)-x \log (x)\right )} \, dx-\log (5) \int \frac {1}{\left (-x-3 e^2 \log (x)+x \log (x)\right )^2} \, dx+\left (3 e^2 \log (5)\right ) \int \frac {1}{\left (3 e^2-x\right ) \left (x+3 e^2 \log (x)-x \log (x)\right )^2} \, dx+\left (3 e^2 \log (5)\right ) \int \frac {1}{x \left (-x-3 e^2 \log (x)+x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 22, normalized size = 0.85 \begin {gather*} x-\frac {\log (5)}{x+3 e^2 \log (x)-x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 38, normalized size = 1.46 \begin {gather*} -\frac {x^{2} - {\left (x^{2} - 3 \, x e^{2}\right )} \log \relax (x) - \log \relax (5)}{{\left (x - 3 \, e^{2}\right )} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 38, normalized size = 1.46 \begin {gather*} \frac {x^{2} \log \relax (x) - 3 \, x e^{2} \log \relax (x) - x^{2} + \log \relax (5)}{x \log \relax (x) - 3 \, e^{2} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 22, normalized size = 0.85
method | result | size |
default | \(x -\frac {\ln \relax (5)}{3 \,{\mathrm e}^{2} \ln \relax (x )-x \ln \relax (x )+x}\) | \(22\) |
risch | \(x -\frac {\ln \relax (5)}{3 \,{\mathrm e}^{2} \ln \relax (x )-x \ln \relax (x )+x}\) | \(22\) |
norman | \(\frac {x^{2}+3 \,{\mathrm e}^{2} x -x^{2} \ln \relax (x )+9 \,{\mathrm e}^{4} \ln \relax (x )-\ln \relax (5)}{3 \,{\mathrm e}^{2} \ln \relax (x )-x \ln \relax (x )+x}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 38, normalized size = 1.46 \begin {gather*} -\frac {x^{2} - {\left (x^{2} - 3 \, x e^{2}\right )} \log \relax (x) - \log \relax (5)}{{\left (x - 3 \, e^{2}\right )} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.97, size = 38, normalized size = 1.46 \begin {gather*} -\frac {\ln \relax (5)+x^2\,\ln \relax (x)-x^2-3\,x\,{\mathrm {e}}^2\,\ln \relax (x)}{x+3\,{\mathrm {e}}^2\,\ln \relax (x)-x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 15, normalized size = 0.58 \begin {gather*} x + \frac {\log {\relax (5 )}}{- x + \left (x - 3 e^{2}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________