Optimal. Leaf size=19 \[ \frac {x}{-5+\frac {1}{2} x^2 \log (5 (-400+x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8000-20 x-2 x^3+\left (800 x^2-2 x^3\right ) \log (-2000+5 x)}{-40000+100 x+\left (8000 x^2-20 x^3\right ) \log (-2000+5 x)+\left (-400 x^4+x^5\right ) \log ^2(-2000+5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-4000+10 x+x^3+(-400+x) x^2 \log (5 (-400+x))\right )}{(400-x) \left (10-x^2 \log (5 (-400+x))\right )^2} \, dx\\ &=2 \int \frac {-4000+10 x+x^3+(-400+x) x^2 \log (5 (-400+x))}{(400-x) \left (10-x^2 \log (5 (-400+x))\right )^2} \, dx\\ &=2 \int \left (\frac {1}{10-x^2 \log (5 (-400+x))}+\frac {8000-20 x-x^3}{(-400+x) \left (-10+x^2 \log (5 (-400+x))\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{10-x^2 \log (5 (-400+x))} \, dx+2 \int \frac {8000-20 x-x^3}{(-400+x) \left (-10+x^2 \log (5 (-400+x))\right )^2} \, dx\\ &=2 \int \frac {1}{10-x^2 \log (5 (-400+x))} \, dx+2 \int \left (-\frac {160020}{\left (-10+x^2 \log (5 (-400+x))\right )^2}-\frac {64000000}{(-400+x) \left (-10+x^2 \log (5 (-400+x))\right )^2}-\frac {400 x}{\left (-10+x^2 \log (5 (-400+x))\right )^2}-\frac {x^2}{\left (-10+x^2 \log (5 (-400+x))\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{10-x^2 \log (5 (-400+x))} \, dx-2 \int \frac {x^2}{\left (-10+x^2 \log (5 (-400+x))\right )^2} \, dx-800 \int \frac {x}{\left (-10+x^2 \log (5 (-400+x))\right )^2} \, dx-320040 \int \frac {1}{\left (-10+x^2 \log (5 (-400+x))\right )^2} \, dx-128000000 \int \frac {1}{(-400+x) \left (-10+x^2 \log (5 (-400+x))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.29, size = 17, normalized size = 0.89 \begin {gather*} \frac {2 x}{-10+x^2 \log (5 (-400+x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 17, normalized size = 0.89 \begin {gather*} \frac {2 \, x}{x^{2} \log \left (5 \, x - 2000\right ) - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 17, normalized size = 0.89 \begin {gather*} \frac {2 \, x}{x^{2} \log \left (5 \, x - 2000\right ) - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 18, normalized size = 0.95
method | result | size |
norman | \(\frac {2 x}{\ln \left (5 x -2000\right ) x^{2}-10}\) | \(18\) |
risch | \(\frac {2 x}{\ln \left (5 x -2000\right ) x^{2}-10}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 21, normalized size = 1.11 \begin {gather*} \frac {2 \, x}{x^{2} \log \relax (5) + x^{2} \log \left (x - 400\right ) - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.79, size = 17, normalized size = 0.89 \begin {gather*} \frac {2\,x}{x^2\,\ln \left (5\,x-2000\right )-10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.74 \begin {gather*} \frac {2 x}{x^{2} \log {\left (5 x - 2000 \right )} - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________