Optimal. Leaf size=25 \[ -3+\frac {2 \left (e^e+4 x\right )}{e^3}+x \left (-x+\frac {x}{e}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 19, normalized size of antiderivative = 0.76, number of steps used = 2, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {12} \begin {gather*} \frac {(1-e) x^2}{e}+\frac {8 x}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (8 e+e^3 (2 x-2 e x)\right ) \, dx}{e^4}\\ &=\frac {8 x}{e^3}+\frac {(1-e) x^2}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 19, normalized size = 0.76 \begin {gather*} \frac {8 x}{e^3}-x^2+\frac {x^2}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 21, normalized size = 0.84 \begin {gather*} -{\left (x^{2} e^{3} - x^{2} e^{2} - 8 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 25, normalized size = 1.00 \begin {gather*} -{\left ({\left (x^{2} e - x^{2}\right )} e^{3} - 8 \, x e\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.88
method | result | size |
norman | \(8 \,{\mathrm e}^{-3} x -\left ({\mathrm e}-1\right ) {\mathrm e}^{-1} x^{2}\) | \(22\) |
risch | \({\mathrm e}^{-3} {\mathrm e}^{2} x^{2}-{\mathrm e}^{-3} x^{2} {\mathrm e}^{3}+8 \,{\mathrm e}^{-3} x\) | \(24\) |
gosper | \(-x \left (x \,{\mathrm e} \,{\mathrm e}^{3}-x \,{\mathrm e}^{3}-8 \,{\mathrm e}\right ) {\mathrm e}^{-1} {\mathrm e}^{-3}\) | \(28\) |
default | \({\mathrm e}^{-1} {\mathrm e}^{-3} \left ({\mathrm e}^{3} \left (-x^{2} {\mathrm e}+x^{2}\right )+8 x \,{\mathrm e}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 25, normalized size = 1.00 \begin {gather*} -{\left ({\left (x^{2} e - x^{2}\right )} e^{3} - 8 \, x e\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 14, normalized size = 0.56 \begin {gather*} \left ({\mathrm {e}}^{-1}-1\right )\,x^2+8\,{\mathrm {e}}^{-3}\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 17, normalized size = 0.68 \begin {gather*} \frac {x^{2} \left (1 - e\right )}{e} + \frac {8 x}{e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________