Optimal. Leaf size=18 \[ \frac {19}{5}+5 (1+x) \left (-36 e^{-x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 24, normalized size of antiderivative = 1.33, number of steps used = 6, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {6688, 14, 2176, 2194} \begin {gather*} 5 x^2-180 e^{-x} x+5 x-180 e^{-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5+\left (10+180 e^{-x}\right ) x\right ) \, dx\\ &=5 x+\int \left (10+180 e^{-x}\right ) x \, dx\\ &=5 x+\int \left (10 x+180 e^{-x} x\right ) \, dx\\ &=5 x+5 x^2+180 \int e^{-x} x \, dx\\ &=5 x-180 e^{-x} x+5 x^2+180 \int e^{-x} \, dx\\ &=-180 e^{-x}+5 x-180 e^{-x} x+5 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 0.94 \begin {gather*} 5 e^{-x} (1+x) \left (-36+e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 19, normalized size = 1.06 \begin {gather*} 5 \, {\left ({\left (x^{2} + x\right )} e^{x} - 36 \, x - 36\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 18, normalized size = 1.00 \begin {gather*} 5 \, x^{2} - 180 \, {\left (x + 1\right )} e^{\left (-x\right )} + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 1.11
method | result | size |
risch | \(5 x^{2}+5 x +\left (-180 x -180\right ) {\mathrm e}^{-x}\) | \(20\) |
default | \(5 x^{2}+5 x -180 x \,{\mathrm e}^{-x}-180 \,{\mathrm e}^{-x}\) | \(23\) |
norman | \(\left (-180-180 x +5 \,{\mathrm e}^{x} x +5 \,{\mathrm e}^{x} x^{2}\right ) {\mathrm e}^{-x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 18, normalized size = 1.00 \begin {gather*} 5 \, x^{2} - 180 \, {\left (x + 1\right )} e^{\left (-x\right )} + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 13, normalized size = 0.72 \begin {gather*} 5\,\left (x-36\,{\mathrm {e}}^{-x}\right )\,\left (x+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 17, normalized size = 0.94 \begin {gather*} 5 x^{2} + 5 x + \left (- 180 x - 180\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________