Optimal. Leaf size=10 \[ \frac {1}{4+4 e^x x} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 13, normalized size of antiderivative = 1.30, number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {6688, 12, 6686} \begin {gather*} \frac {1}{4 \left (e^x x+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (-1-x)}{4 \left (1+e^x x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^x (-1-x)}{\left (1+e^x x\right )^2} \, dx\\ &=\frac {1}{4 \left (1+e^x x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 13, normalized size = 1.30 \begin {gather*} \frac {1}{4 \left (1+e^x x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 10, normalized size = 1.00 \begin {gather*} \frac {1}{4 \, {\left (x e^{x} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 10, normalized size = 1.00 \begin {gather*} \frac {1}{4 \, {\left (x e^{x} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 11, normalized size = 1.10
method | result | size |
norman | \(\frac {1}{4 \,{\mathrm e}^{x} x +4}\) | \(11\) |
risch | \(\frac {1}{4 \,{\mathrm e}^{x} x +4}\) | \(11\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 10, normalized size = 1.00 \begin {gather*} \frac {1}{4 \, {\left (x e^{x} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 9, normalized size = 0.90 \begin {gather*} \frac {1}{4\,x\,{\mathrm {e}}^x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 8, normalized size = 0.80 \begin {gather*} \frac {1}{4 x e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________