Optimal. Leaf size=24 \[ -\frac {e^5}{5}+e^x-x+4 e^{-12+x} x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 17, normalized size of antiderivative = 0.71, number of steps used = 10, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6688, 2194, 2196, 2176} \begin {gather*} 4 e^{x-12} x^2-x+e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+e^x+4 e^{-12+x} x (2+x)\right ) \, dx\\ &=-x+4 \int e^{-12+x} x (2+x) \, dx+\int e^x \, dx\\ &=e^x-x+4 \int \left (2 e^{-12+x} x+e^{-12+x} x^2\right ) \, dx\\ &=e^x-x+4 \int e^{-12+x} x^2 \, dx+8 \int e^{-12+x} x \, dx\\ &=e^x-x+8 e^{-12+x} x+4 e^{-12+x} x^2-8 \int e^{-12+x} \, dx-8 \int e^{-12+x} x \, dx\\ &=-8 e^{-12+x}+e^x-x+4 e^{-12+x} x^2+8 \int e^{-12+x} \, dx\\ &=e^x-x+4 e^{-12+x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 0.71 \begin {gather*} e^x-x+4 e^{-12+x} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 17, normalized size = 0.71 \begin {gather*} {\left (4 \, x^{2} + e^{12}\right )} e^{\left (x - 12\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 15, normalized size = 0.62 \begin {gather*} 4 \, x^{2} e^{\left (x - 12\right )} - x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 0.75
method | result | size |
risch | \(-x +\left (4 x^{2}+{\mathrm e}^{12}\right ) {\mathrm e}^{x -12}\) | \(18\) |
norman | \(\left ({\mathrm e}^{2 x}-{\mathrm e}^{x} x +4 \,{\mathrm e}^{-12} x^{2} {\mathrm e}^{2 x}\right ) {\mathrm e}^{-x}\) | \(29\) |
default | \(-x +8 \,{\mathrm e}^{-12} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+4 \,{\mathrm e}^{-12} \left ({\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right )+{\mathrm e}^{x}\) | \(44\) |
meijerg | \(-{\mathrm e}^{x -x \,{\mathrm e}^{-12}+12} \left (1-{\mathrm e}^{x \,{\mathrm e}^{-12}}\right )+\frac {{\mathrm e}^{x -x \,{\mathrm e}^{-12}+12} \left (1-{\mathrm e}^{x \,{\mathrm e}^{-12} \left (-{\mathrm e}^{12}+1\right )}\right )}{-{\mathrm e}^{12}+1}-4 \,{\mathrm e}^{24+x -x \,{\mathrm e}^{-12}} \left (2-\frac {\left (3 x^{2} {\mathrm e}^{-24}-6 x \,{\mathrm e}^{-12}+6\right ) {\mathrm e}^{x \,{\mathrm e}^{-12}}}{3}\right )+8 \,{\mathrm e}^{x -x \,{\mathrm e}^{-12}+12} \left (1-\frac {\left (2-2 x \,{\mathrm e}^{-12}\right ) {\mathrm e}^{x \,{\mathrm e}^{-12}}}{2}\right )\) | \(116\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 29, normalized size = 1.21 \begin {gather*} 4 \, {\left (x^{2} - 2 \, x + 2\right )} e^{\left (x - 12\right )} + 8 \, {\left (x - 1\right )} e^{\left (x - 12\right )} - x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 15, normalized size = 0.62 \begin {gather*} {\mathrm {e}}^x-x+4\,x^2\,{\mathrm {e}}^{-12}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.62 \begin {gather*} - x + \frac {\left (4 x^{2} + e^{12}\right ) e^{x}}{e^{12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________