Optimal. Leaf size=24 \[ e^{e^{x \left (x+x^2-\frac {e^2}{9 \log (2)}\right )} x} \]
________________________________________________________________________________________
Rubi [F] time = 4.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-3+\exp \left (\frac {-e^5 x+e^3 \left (9 x^2+9 x^3\right ) \log (2)}{9 e^3 \log (2)}\right ) x+\frac {-e^5 x+e^3 \left (9 x^2+9 x^3\right ) \log (2)}{9 e^3 \log (2)}\right ) \left (-e^5 x+e^3 \left (9+18 x^2+27 x^3\right ) \log (2)\right )}{9 \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \exp \left (-3+\exp \left (\frac {-e^5 x+e^3 \left (9 x^2+9 x^3\right ) \log (2)}{9 e^3 \log (2)}\right ) x+\frac {-e^5 x+e^3 \left (9 x^2+9 x^3\right ) \log (2)}{9 e^3 \log (2)}\right ) \left (-e^5 x+e^3 \left (9+18 x^2+27 x^3\right ) \log (2)\right ) \, dx}{9 \log (2)}\\ &=\frac {\int \exp \left (e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) \left (-e^2 x+9 x^2 \log (4)+9 x^3 \log (8)+\log (512)\right ) \, dx}{9 \log (2)}\\ &=\frac {\int \left (-\exp \left (2+e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) x+9 \exp \left (e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) x^2 \log (4)+9 \exp \left (e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) x^3 \log (8)+\exp \left (e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) \log (512)\right ) \, dx}{9 \log (2)}\\ &=-\frac {\int \exp \left (2+e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) x \, dx}{9 \log (2)}+\frac {\log (4) \int \exp \left (e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) x^2 \, dx}{\log (2)}+\frac {\log (8) \int \exp \left (e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) x^3 \, dx}{\log (2)}+\frac {\log (512) \int \exp \left (e^{x \left (x+x^2-\frac {e^2}{\log (512)}\right )} x+x^2+x^3-\frac {e^2 x}{\log (512)}\right ) \, dx}{9 \log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.95, size = 114, normalized size = 4.75 \begin {gather*} \frac {\int e^{-3+e^{\frac {-e^5 x+e^3 \left (9 x^2+9 x^3\right ) \log (2)}{9 e^3 \log (2)}} x+\frac {-e^5 x+e^3 \left (9 x^2+9 x^3\right ) \log (2)}{9 e^3 \log (2)}} \left (-e^5 x+e^3 \left (9+18 x^2+27 x^3\right ) \log (2)\right ) \, dx}{9 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.06, size = 77, normalized size = 3.21 \begin {gather*} e^{\left (\frac {9 \, x e^{\left (-\frac {x e^{2} - 9 \, {\left (x^{3} + x^{2}\right )} \log \relax (2)}{9 \, \log \relax (2)}\right )} \log \relax (2) - x e^{2} + 9 \, {\left (x^{3} + x^{2} - 3\right )} \log \relax (2)}{9 \, \log \relax (2)} + \frac {x e^{2} - 9 \, {\left (x^{3} + x^{2}\right )} \log \relax (2)}{9 \, \log \relax (2)} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (9 \, {\left (3 \, x^{3} + 2 \, x^{2} + 1\right )} e^{3} \log \relax (2) - x e^{5}\right )} e^{\left (x e^{\left (\frac {{\left (9 \, {\left (x^{3} + x^{2}\right )} e^{3} \log \relax (2) - x e^{5}\right )} e^{\left (-3\right )}}{9 \, \log \relax (2)}\right )} + \frac {{\left (9 \, {\left (x^{3} + x^{2}\right )} e^{3} \log \relax (2) - x e^{5}\right )} e^{\left (-3\right )}}{9 \, \log \relax (2)} - 3\right )}}{9 \, \log \relax (2)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 35, normalized size = 1.46
method | result | size |
risch | \({\mathrm e}^{x \,{\mathrm e}^{\frac {x \left (9 \,{\mathrm e}^{3} \ln \relax (2) x^{2}+9 \,{\mathrm e}^{3} \ln \relax (2) x -{\mathrm e}^{5}\right ) {\mathrm e}^{-3}}{9 \ln \relax (2)}}}\) | \(35\) |
norman | \({\mathrm e}^{x \,{\mathrm e}^{\frac {\left (\left (9 x^{3}+9 x^{2}\right ) {\mathrm e}^{3} \ln \relax (2)-x \,{\mathrm e}^{5}\right ) {\mathrm e}^{-3}}{9 \ln \relax (2)}}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 20, normalized size = 0.83 \begin {gather*} e^{\left (x e^{\left (x^{3} + x^{2} - \frac {x e^{2}}{9 \, \log \relax (2)}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.90, size = 21, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^2}{9\,\ln \relax (2)}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 36, normalized size = 1.50 \begin {gather*} e^{x e^{\frac {- \frac {x e^{5}}{9} + \frac {\left (9 x^{3} + 9 x^{2}\right ) e^{3} \log {\relax (2 )}}{9}}{e^{3} \log {\relax (2 )}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________