Optimal. Leaf size=11 \[ \log ^2\left (\frac {1}{16} x (1+x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.27, antiderivative size = 53, normalized size of antiderivative = 4.82, number of steps used = 17, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {1593, 2528, 2524, 2357, 2301, 2317, 2391, 2418, 2390} \begin {gather*} 2 \log \left (\frac {1}{16} \left (x^2+x\right )\right ) \log (x)+2 \log (x+1) \log \left (\frac {1}{16} \left (x^2+x\right )\right )-\log ^2(x)-\log ^2(x+1)-2 \log (x+1) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2301
Rule 2317
Rule 2357
Rule 2390
Rule 2391
Rule 2418
Rule 2524
Rule 2528
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(2+4 x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )}{x (1+x)} \, dx\\ &=\int \left (\frac {2 \log \left (\frac {1}{16} \left (x+x^2\right )\right )}{x}+\frac {2 \log \left (\frac {1}{16} \left (x+x^2\right )\right )}{1+x}\right ) \, dx\\ &=2 \int \frac {\log \left (\frac {1}{16} \left (x+x^2\right )\right )}{x} \, dx+2 \int \frac {\log \left (\frac {1}{16} \left (x+x^2\right )\right )}{1+x} \, dx\\ &=2 \log (x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \log (1+x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )-2 \int \frac {(1+2 x) \log (x)}{x+x^2} \, dx-2 \int \frac {(1+2 x) \log (1+x)}{x+x^2} \, dx\\ &=2 \log (x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \log (1+x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )-2 \int \frac {(1+2 x) \log (x)}{x (1+x)} \, dx-2 \int \frac {(1+2 x) \log (1+x)}{x (1+x)} \, dx\\ &=2 \log (x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \log (1+x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )-2 \int \left (\frac {\log (x)}{x}+\frac {\log (x)}{1+x}\right ) \, dx-2 \int \left (\frac {\log (1+x)}{x}+\frac {\log (1+x)}{1+x}\right ) \, dx\\ &=2 \log (x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \log (1+x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )-2 \int \frac {\log (x)}{x} \, dx-2 \int \frac {\log (x)}{1+x} \, dx-2 \int \frac {\log (1+x)}{x} \, dx-2 \int \frac {\log (1+x)}{1+x} \, dx\\ &=-\log ^2(x)-2 \log (x) \log (1+x)+2 \log (x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \log (1+x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \text {Li}_2(-x)+2 \int \frac {\log (1+x)}{x} \, dx-2 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,1+x\right )\\ &=-\log ^2(x)-2 \log (x) \log (1+x)-\log ^2(1+x)+2 \log (x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \log (1+x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 53, normalized size = 4.82 \begin {gather*} -\log ^2(x)-2 \log (x) \log (1+x)-\log ^2(1+x)+2 \log (x) \log \left (\frac {1}{16} \left (x+x^2\right )\right )+2 \log (1+x) \log \left (\frac {1}{16} \left (x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 12, normalized size = 1.09 \begin {gather*} \log \left (\frac {1}{16} \, x^{2} + \frac {1}{16} \, x\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, x + 1\right )} \log \left (\frac {1}{16} \, x^{2} + \frac {1}{16} \, x\right )}{x^{2} + x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 13, normalized size = 1.18
method | result | size |
norman | \(\ln \left (\frac {1}{16} x^{2}+\frac {1}{16} x \right )^{2}\) | \(13\) |
risch | \(\ln \left (\frac {1}{16} x^{2}+\frac {1}{16} x \right )^{2}\) | \(13\) |
default | \(2 \ln \relax (x ) \ln \left (x^{2}+x \right )-\ln \relax (x )^{2}-2 \ln \relax (x ) \ln \left (x +1\right )+2 \ln \left (x +1\right ) \ln \left (x^{2}+x \right )-\ln \left (x +1\right )^{2}-8 \ln \relax (2) \ln \left (\left (x +1\right ) x \right )\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 32, normalized size = 2.91 \begin {gather*} -2 \, {\left (4 \, \log \relax (2) - \log \relax (x)\right )} \log \left (x + 1\right ) + \log \left (x + 1\right )^{2} - 8 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.71, size = 13, normalized size = 1.18 \begin {gather*} {\left (\ln \left (x^2+x\right )-\ln \left (16\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.91 \begin {gather*} \log {\left (\frac {x^{2}}{16} + \frac {x}{16} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________