Optimal. Leaf size=25 \[ \frac {2 e^{-\frac {3 e^{-e^{x^2}+2 x}}{x}}}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 99, normalized size of antiderivative = 3.96, number of steps used = 1, number of rules used = 1, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2288} \begin {gather*} \frac {2 e^{-e^{x^2}-\frac {3 e^{2 x-e^{x^2}}}{x}+2 x} \left (2 e^{x^2} x^2-2 x+1\right )}{x^3 \left (\frac {e^{2 x-e^{x^2}}}{x^2}-\frac {2 e^{2 x-e^{x^2}} \left (1-e^{x^2} x\right )}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {2 e^{-e^{x^2}-\frac {3 e^{-e^{x^2}+2 x}}{x}+2 x} \left (1-2 x+2 e^{x^2} x^2\right )}{x^3 \left (\frac {e^{-e^{x^2}+2 x}}{x^2}-\frac {2 e^{-e^{x^2}+2 x} \left (1-e^{x^2} x\right )}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.78, size = 25, normalized size = 1.00 \begin {gather*} \frac {2 e^{-\frac {3 e^{-e^{x^2}+2 x}}{x}}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.49, size = 22, normalized size = 0.88 \begin {gather*} \frac {2 \, e^{\left (-\frac {3 \, e^{\left (2 \, x - e^{\left (x^{2}\right )}\right )}}{x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (3 \, {\left (2 \, x^{2} e^{\left (x^{2}\right )} - 2 \, x + 1\right )} e^{\left (2 \, x - e^{\left (x^{2}\right )}\right )} - x\right )} e^{\left (-\frac {3 \, e^{\left (2 \, x - e^{\left (x^{2}\right )}\right )}}{x}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.92
method | result | size |
risch | \(\frac {2 \,{\mathrm e}^{-\frac {3 \,{\mathrm e}^{-{\mathrm e}^{x^{2}}+2 x}}{x}}}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {{\left (3 \, {\left (2 \, x^{2} e^{\left (x^{2}\right )} - 2 \, x + 1\right )} e^{\left (2 \, x - e^{\left (x^{2}\right )}\right )} - x\right )} e^{\left (-\frac {3 \, e^{\left (2 \, x - e^{\left (x^{2}\right )}\right )}}{x}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 22, normalized size = 0.88 \begin {gather*} \frac {2\,{\mathrm {e}}^{-\frac {3\,{\mathrm {e}}^{-{\mathrm {e}}^{x^2}}\,{\mathrm {e}}^{2\,x}}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 17, normalized size = 0.68 \begin {gather*} \frac {2 e^{- \frac {3 e^{2 x - e^{x^{2}}}}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________