3.55.88 \(\int \frac {\frac {e^5}{x}+16 e^{32 e^6+16 x} x}{x} \, dx\)

Optimal. Leaf size=20 \[ e^{32 e^6+16 x}-\frac {e^5}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {14, 2194} \begin {gather*} e^{16 x+32 e^6}-\frac {e^5}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^5/x + 16*E^(32*E^6 + 16*x)*x)/x,x]

[Out]

E^(32*E^6 + 16*x) - E^5/x

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (16 e^{32 e^6+16 x}+\frac {e^5}{x^2}\right ) \, dx\\ &=-\frac {e^5}{x}+16 \int e^{32 e^6+16 x} \, dx\\ &=e^{32 e^6+16 x}-\frac {e^5}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 20, normalized size = 1.00 \begin {gather*} e^{32 e^6+16 x}-\frac {e^5}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^5/x + 16*E^(32*E^6 + 16*x)*x)/x,x]

[Out]

E^(32*E^6 + 16*x) - E^5/x

________________________________________________________________________________________

fricas [A]  time = 1.06, size = 20, normalized size = 1.00 \begin {gather*} \frac {x e^{\left (16 \, x + 32 \, e^{6}\right )} - e^{5}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(5-log(x))+16*x*exp(16*exp(3)^2+8*x)^2)/x,x, algorithm="fricas")

[Out]

(x*e^(16*x + 32*e^6) - e^5)/x

________________________________________________________________________________________

giac [A]  time = 0.39, size = 20, normalized size = 1.00 \begin {gather*} \frac {x e^{\left (16 \, x + 32 \, e^{6}\right )} - e^{5}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(5-log(x))+16*x*exp(16*exp(3)^2+8*x)^2)/x,x, algorithm="giac")

[Out]

(x*e^(16*x + 32*e^6) - e^5)/x

________________________________________________________________________________________

maple [A]  time = 0.04, size = 18, normalized size = 0.90




method result size



risch \(-\frac {{\mathrm e}^{5}}{x}+{\mathrm e}^{32 \,{\mathrm e}^{6}+16 x}\) \(18\)
default \({\mathrm e}^{32 \,{\mathrm e}^{6}+16 x}-{\mathrm e}^{5-\ln \relax (x )}\) \(24\)
norman \(\frac {x \,{\mathrm e}^{32 \,{\mathrm e}^{6}+16 x}-{\mathrm e}^{5}}{x}\) \(25\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(5-ln(x))+16*x*exp(16*exp(3)^2+8*x)^2)/x,x,method=_RETURNVERBOSE)

[Out]

-exp(5)/x+exp(32*exp(6)+16*x)

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 17, normalized size = 0.85 \begin {gather*} -\frac {e^{5}}{x} + e^{\left (16 \, x + 32 \, e^{6}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(5-log(x))+16*x*exp(16*exp(3)^2+8*x)^2)/x,x, algorithm="maxima")

[Out]

-e^5/x + e^(16*x + 32*e^6)

________________________________________________________________________________________

mupad [B]  time = 3.52, size = 18, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{32\,{\mathrm {e}}^6}\,{\mathrm {e}}^{16\,x}-\frac {{\mathrm {e}}^5}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(5 - log(x)) + 16*x*exp(16*x + 32*exp(6)))/x,x)

[Out]

exp(32*exp(6))*exp(16*x) - exp(5)/x

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 14, normalized size = 0.70 \begin {gather*} e^{16 x + 32 e^{6}} - \frac {e^{5}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(5-ln(x))+16*x*exp(16*exp(3)**2+8*x)**2)/x,x)

[Out]

exp(16*x + 32*exp(6)) - exp(5)/x

________________________________________________________________________________________