Optimal. Leaf size=22 \[ 9 e^{-2+e^x+\frac {x^4}{25 e^2}} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 60, normalized size of antiderivative = 2.73, number of steps used = 2, number of rules used = 2, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12, 2288} \begin {gather*} \frac {9 e^{-\frac {-x^4-25 e^{x+2}+50 e^2}{25 e^2}} \left (4 x^5+25 e^{x+2} x^2\right )}{4 x^3+25 e^{x+2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int e^{-2+\frac {-50 e^2+25 e^{2+x}+x^4}{25 e^2}} \left (450 e^2 x+225 e^{2+x} x^2+36 x^5\right ) \, dx\\ &=\frac {9 e^{-\frac {50 e^2-25 e^{2+x}-x^4}{25 e^2}} \left (25 e^{2+x} x^2+4 x^5\right )}{25 e^{2+x}+4 x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 1.00 \begin {gather*} 9 e^{-2+e^x+\frac {x^4}{25 e^2}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 26, normalized size = 1.18 \begin {gather*} 9 \, x^{2} e^{\left (\frac {1}{25} \, {\left (x^{4} - 100 \, e^{2} + 25 \, e^{\left (x + 2\right )}\right )} e^{\left (-2\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {9}{25} \, {\left (4 \, x^{5} + 25 \, x^{2} e^{\left (x + 2\right )} + 50 \, x e^{2}\right )} e^{\left (\frac {1}{25} \, {\left (x^{4} - 50 \, e^{2} + 25 \, e^{\left (x + 2\right )}\right )} e^{\left (-2\right )} - 2\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 27, normalized size = 1.23
method | result | size |
risch | \(9 x^{2} {\mathrm e}^{-\frac {\left (-x^{4}+50 \,{\mathrm e}^{2}-25 \,{\mathrm e}^{2+x}\right ) {\mathrm e}^{-2}}{25}}\) | \(27\) |
norman | \(9 x^{2} {\mathrm e}^{\frac {\left (25 \,{\mathrm e}^{2} {\mathrm e}^{x}-50 \,{\mathrm e}^{2}+x^{4}\right ) {\mathrm e}^{-2}}{25}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.86, size = 17, normalized size = 0.77 \begin {gather*} 9 \, x^{2} e^{\left (\frac {1}{25} \, x^{4} e^{\left (-2\right )} + e^{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.61, size = 18, normalized size = 0.82 \begin {gather*} 9\,x^2\,{\mathrm {e}}^{\frac {x^4\,{\mathrm {e}}^{-2}}{25}}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 26, normalized size = 1.18 \begin {gather*} 9 x^{2} e^{\frac {\frac {x^{4}}{25} + e^{2} e^{x} - 2 e^{2}}{e^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________