Optimal. Leaf size=25 \[ \frac {1}{9} (-4+x) x \log \left (\left (-x+\frac {1}{9} (-4+4 x)\right ) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 37, normalized size of antiderivative = 1.48, number of steps used = 22, number of rules used = 8, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6742, 77, 2330, 2298, 2309, 2178, 2555, 12} \begin {gather*} \frac {1}{9} x^2 \log \left (-\frac {1}{9} (5 x+4) \log (x)\right )-\frac {4}{9} x \log \left (-\frac {1}{9} (5 x+4) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 77
Rule 2178
Rule 2298
Rule 2309
Rule 2330
Rule 2555
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(-4+x) (4+5 x+5 x \log (x))}{9 (4+5 x) \log (x)}+\frac {2}{9} (-2+x) \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )\right ) \, dx\\ &=\frac {1}{9} \int \frac {(-4+x) (4+5 x+5 x \log (x))}{(4+5 x) \log (x)} \, dx+\frac {2}{9} \int (-2+x) \log \left (-\frac {1}{9} (4+5 x) \log (x)\right ) \, dx\\ &=-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} \int \left (\frac {5 (-4+x) x}{4+5 x}+\frac {-4+x}{\log (x)}\right ) \, dx-\frac {2}{9} \int \frac {(4-x) (-4-5 x-5 x \log (x))}{2 (4+5 x) \log (x)} \, dx\\ &=-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} \int \frac {-4+x}{\log (x)} \, dx-\frac {1}{9} \int \frac {(4-x) (-4-5 x-5 x \log (x))}{(4+5 x) \log (x)} \, dx+\frac {5}{9} \int \frac {(-4+x) x}{4+5 x} \, dx\\ &=-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )-\frac {1}{9} \int \left (\frac {5 (-4+x) x}{4+5 x}+\frac {-4+x}{\log (x)}\right ) \, dx+\frac {1}{9} \int \left (-\frac {4}{\log (x)}+\frac {x}{\log (x)}\right ) \, dx+\frac {5}{9} \int \left (-\frac {24}{25}+\frac {x}{5}+\frac {96}{25 (4+5 x)}\right ) \, dx\\ &=-\frac {8 x}{15}+\frac {x^2}{18}+\frac {32}{75} \log (4+5 x)-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )-\frac {1}{9} \int \frac {-4+x}{\log (x)} \, dx+\frac {1}{9} \int \frac {x}{\log (x)} \, dx-\frac {4}{9} \int \frac {1}{\log (x)} \, dx-\frac {5}{9} \int \frac {(-4+x) x}{4+5 x} \, dx\\ &=-\frac {8 x}{15}+\frac {x^2}{18}+\frac {32}{75} \log (4+5 x)-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )-\frac {4 \text {li}(x)}{9}-\frac {1}{9} \int \left (-\frac {4}{\log (x)}+\frac {x}{\log (x)}\right ) \, dx+\frac {1}{9} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-\frac {5}{9} \int \left (-\frac {24}{25}+\frac {x}{5}+\frac {96}{25 (4+5 x)}\right ) \, dx\\ &=\frac {1}{9} \text {Ei}(2 \log (x))-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )-\frac {4 \text {li}(x)}{9}-\frac {1}{9} \int \frac {x}{\log (x)} \, dx+\frac {4}{9} \int \frac {1}{\log (x)} \, dx\\ &=\frac {1}{9} \text {Ei}(2 \log (x))-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )-\frac {1}{9} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {4}{9} x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )+\frac {1}{9} x^2 \log \left (-\frac {1}{9} (4+5 x) \log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 20, normalized size = 0.80 \begin {gather*} \frac {1}{9} (-4+x) x \log \left (-\frac {1}{9} (4+5 x) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 19, normalized size = 0.76 \begin {gather*} \frac {1}{9} \, {\left (x^{2} - 4 \, x\right )} \log \left (-\frac {1}{9} \, {\left (5 \, x + 4\right )} \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.68, size = 33, normalized size = 1.32 \begin {gather*} -\frac {2}{9} \, x^{2} \log \relax (3) + \frac {8}{9} \, x \log \relax (3) + \frac {1}{9} \, {\left (x^{2} - 4 \, x\right )} \log \left (-5 \, x \log \relax (x) - 4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 30, normalized size = 1.20
method | result | size |
norman | \(-\frac {4 x \ln \left (\frac {\left (-5 x -4\right ) \ln \relax (x )}{9}\right )}{9}+\frac {x^{2} \ln \left (\frac {\left (-5 x -4\right ) \ln \relax (x )}{9}\right )}{9}\) | \(30\) |
risch | \(\frac {x^{2} \ln \relax (5)}{9}-\frac {2 x^{2} \ln \relax (3)}{9}-\frac {4 x \ln \left (\ln \relax (x )\right )}{9}+\frac {x^{2} \ln \left (\ln \relax (x )\right )}{9}-\frac {4 x \ln \relax (5)}{9}+\frac {8 x \ln \relax (3)}{9}+\frac {i \pi \,x^{2}}{9}-\frac {2 i \pi x \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{3}}{9}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{3}}{18}-\frac {2 i \pi x \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{2}}{9}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left (x +\frac {4}{5}\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )}{18}-\frac {2 i \pi x \,\mathrm {csgn}\left (i \left (x +\frac {4}{5}\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{2}}{9}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x +\frac {4}{5}\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{2}}{18}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{2}}{18}+\frac {2 i \pi x \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left (x +\frac {4}{5}\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )}{9}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{2}}{9}+\left (\frac {1}{9} x^{2}-\frac {4}{9} x \right ) \ln \left (x +\frac {4}{5}\right )+\frac {4 i \pi x \mathrm {csgn}\left (i \ln \relax (x ) \left (x +\frac {4}{5}\right )\right )^{2}}{9}-\frac {4 i \pi x}{9}\) | \(284\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 40, normalized size = 1.60 \begin {gather*} -\frac {2}{9} \, x^{2} \log \relax (3) + \frac {8}{9} \, x \log \relax (3) + \frac {1}{9} \, {\left (x^{2} - 4 \, x\right )} \log \left (-5 \, x - 4\right ) + \frac {1}{9} \, {\left (x^{2} - 4 \, x\right )} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.94, size = 21, normalized size = 0.84 \begin {gather*} -\ln \left (-\frac {\ln \relax (x)\,\left (5\,x+4\right )}{9}\right )\,\left (\frac {4\,x}{9}-\frac {x^2}{9}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.66, size = 46, normalized size = 1.84 \begin {gather*} \left (\frac {x^{2}}{9} - \frac {4 x}{9} - \frac {16}{225}\right ) \log {\left (\left (- \frac {5 x}{9} - \frac {4}{9}\right ) \log {\relax (x )} \right )} + \frac {16 \log {\left (225 x + 180 \right )}}{225} + \frac {16 \log {\left (\log {\relax (x )} \right )}}{225} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________