Optimal. Leaf size=24 \[ e^{-4+2 x}+(-1-x)^2-\frac {6 e^x}{x}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 27, normalized size of antiderivative = 1.12, number of steps used = 5, number of rules used = 4, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 14, 2194, 2197} \begin {gather*} \frac {1}{4} (2 x+3)^2+e^{2 x-4}-\frac {6 e^x}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{4+x} (6-6 x)+2 e^{2 x} x^2+e^4 \left (3 x^2+2 x^3\right )}{x^2} \, dx}{e^4}\\ &=\frac {\int \left (2 e^{2 x}-\frac {6 e^{4+x} (-1+x)}{x^2}+e^4 (3+2 x)\right ) \, dx}{e^4}\\ &=\frac {1}{4} (3+2 x)^2+\frac {2 \int e^{2 x} \, dx}{e^4}-\frac {6 \int \frac {e^{4+x} (-1+x)}{x^2} \, dx}{e^4}\\ &=e^{-4+2 x}-\frac {6 e^x}{x}+\frac {1}{4} (3+2 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.92 \begin {gather*} e^{-4+2 x}-\frac {6 e^x}{x}+3 x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.32, size = 33, normalized size = 1.38 \begin {gather*} \frac {{\left ({\left (x^{3} + 3 \, x^{2}\right )} e^{12} + x e^{\left (2 \, x + 8\right )} - 6 \, e^{\left (x + 12\right )}\right )} e^{\left (-12\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.33 \begin {gather*} \frac {{\left (x^{3} e^{4} + 3 \, x^{2} e^{4} + x e^{\left (2 \, x\right )} - 6 \, e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 21, normalized size = 0.88
method | result | size |
risch | \(x^{2}+3 x +{\mathrm e}^{2 x -4}-\frac {6 \,{\mathrm e}^{x}}{x}\) | \(21\) |
norman | \(\frac {\left (x^{3} {\mathrm e}^{2}+x \,{\mathrm e}^{-2} {\mathrm e}^{2 x}+3 x^{2} {\mathrm e}^{2}-6 \,{\mathrm e}^{2} {\mathrm e}^{x}\right ) {\mathrm e}^{-2}}{x}\) | \(39\) |
default | \({\mathrm e}^{-4} \left (3 x \,{\mathrm e}^{4}+{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{4}+6 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{x}}{x}-\expIntegralEi \left (1, -x \right )\right )+6 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x \right )\right )\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 34, normalized size = 1.42 \begin {gather*} {\left (x^{2} e^{4} + 3 \, x e^{4} - 6 \, {\rm Ei}\relax (x) e^{4} + 6 \, e^{4} \Gamma \left (-1, -x\right ) + e^{\left (2 \, x\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 20, normalized size = 0.83 \begin {gather*} 3\,x+{\mathrm {e}}^{2\,x-4}-\frac {6\,{\mathrm {e}}^x}{x}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 26, normalized size = 1.08 \begin {gather*} x^{2} + 3 x + \frac {x e^{2 x} - 6 e^{4} e^{x}}{x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________