Optimal. Leaf size=17 \[ \frac {1}{4} e^x x \left (-x+16 x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 19, normalized size of antiderivative = 1.12, number of steps used = 13, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {12, 1594, 2196, 2176, 2194} \begin {gather*} 4 e^x x^3-\frac {e^x x^2}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^x \left (-2 x+47 x^2+16 x^3\right ) \, dx\\ &=\frac {1}{4} \int e^x x \left (-2+47 x+16 x^2\right ) \, dx\\ &=\frac {1}{4} \int \left (-2 e^x x+47 e^x x^2+16 e^x x^3\right ) \, dx\\ &=-\left (\frac {1}{2} \int e^x x \, dx\right )+4 \int e^x x^3 \, dx+\frac {47}{4} \int e^x x^2 \, dx\\ &=-\frac {e^x x}{2}+\frac {47 e^x x^2}{4}+4 e^x x^3+\frac {\int e^x \, dx}{2}-12 \int e^x x^2 \, dx-\frac {47}{2} \int e^x x \, dx\\ &=\frac {e^x}{2}-24 e^x x-\frac {e^x x^2}{4}+4 e^x x^3+\frac {47 \int e^x \, dx}{2}+24 \int e^x x \, dx\\ &=24 e^x-\frac {e^x x^2}{4}+4 e^x x^3-24 \int e^x \, dx\\ &=-\frac {1}{4} e^x x^2+4 e^x x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 15, normalized size = 0.88 \begin {gather*} \frac {1}{4} e^x x^2 (-1+16 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 15, normalized size = 0.88 \begin {gather*} \frac {1}{4} \, {\left (16 \, x^{3} - x^{2}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 15, normalized size = 0.88 \begin {gather*} \frac {1}{4} \, {\left (16 \, x^{3} - x^{2}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 13, normalized size = 0.76
method | result | size |
gosper | \(\frac {{\mathrm e}^{x} \left (16 x -1\right ) x^{2}}{4}\) | \(13\) |
default | \(-\frac {{\mathrm e}^{x} x^{2}}{4}+4 \,{\mathrm e}^{x} x^{3}\) | \(16\) |
norman | \(-\frac {{\mathrm e}^{x} x^{2}}{4}+4 \,{\mathrm e}^{x} x^{3}\) | \(16\) |
risch | \(\frac {\left (16 x^{3}-x^{2}\right ) {\mathrm e}^{x}}{4}\) | \(16\) |
meijerg | \(-\left (-4 x^{3}+12 x^{2}-24 x +24\right ) {\mathrm e}^{x}+\frac {47 \left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{12}+\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{4}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 37, normalized size = 2.18 \begin {gather*} 4 \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} + \frac {47}{4} \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} - \frac {1}{2} \, {\left (x - 1\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 12, normalized size = 0.71 \begin {gather*} \frac {x^2\,{\mathrm {e}}^x\,\left (16\,x-1\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 12, normalized size = 0.71 \begin {gather*} \frac {\left (16 x^{3} - x^{2}\right ) e^{x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________