Optimal. Leaf size=25 \[ \log \left (4+\frac {e^x}{x+\log (3)}+\frac {5+x}{4 \log (\log (4))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+2 x \log (3)+\log ^2(3)+e^x (-4+4 x+4 \log (3)) \log (\log (4))}{5 x^2+x^3+\left (10 x+2 x^2\right ) \log (3)+(5+x) \log ^2(3)+\left (16 x^2+32 x \log (3)+16 \log ^2(3)+e^x (4 x+4 \log (3))\right ) \log (\log (4))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2+2 x \log (3)+\log ^2(3)+e^x (-4+4 x+4 \log (3)) \log (\log (4))}{(x+\log (3)) \left (x^2+4 e^x \log (\log (4))+5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )+5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )\right )} \, dx\\ &=\int \left (\frac {-1+x+\log (3)}{x+\log (3)}+\frac {5-x^2-\log (81)+16 (1-\log (3)) \log (\log (4))-x (3+\log (3)+16 \log (\log (4)))}{x^2+4 e^x \log (\log (4))+5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )+5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )}\right ) \, dx\\ &=\int \frac {-1+x+\log (3)}{x+\log (3)} \, dx+\int \frac {5-x^2-\log (81)+16 (1-\log (3)) \log (\log (4))-x (3+\log (3)+16 \log (\log (4)))}{x^2+4 e^x \log (\log (4))+5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )+5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )} \, dx\\ &=\int \left (1+\frac {1}{-x-\log (3)}\right ) \, dx+\int \left (\frac {x^2}{-x^2-4 e^x \log (\log (4))-5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )-5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )}+\frac {\log (81) \left (1+\frac {-5+16 (-1+\log (3)) \log (\log (4))}{\log (81)}\right )}{-x^2-4 e^x \log (\log (4))-5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )-5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )}+\frac {x (-3-\log (3)-16 \log (\log (4)))}{x^2+4 e^x \log (\log (4))+5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )+5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )}\right ) \, dx\\ &=x-\log (x+\log (3))+(-3-\log (3)-16 \log (\log (4))) \int \frac {x}{x^2+4 e^x \log (\log (4))+5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )+5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )} \, dx+(-5+\log (81)-16 (1-\log (3)) \log (\log (4))) \int \frac {1}{-x^2-4 e^x \log (\log (4))-5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )-5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )} \, dx+\int \frac {x^2}{-x^2-4 e^x \log (\log (4))-5 \log (3) \left (1+\frac {16}{5} \log (\log (4))\right )-5 x \left (1+\frac {1}{5} (\log (3)+16 \log (\log (4)))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.13, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^2+2 x \log (3)+\log ^2(3)+e^x (-4+4 x+4 \log (3)) \log (\log (4))}{5 x^2+x^3+\left (10 x+2 x^2\right ) \log (3)+(5+x) \log ^2(3)+\left (16 x^2+32 x \log (3)+16 \log ^2(3)+e^x (4 x+4 \log (3))\right ) \log (\log (4))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 39, normalized size = 1.56 \begin {gather*} \log \left (x^{2} + {\left (x + 5\right )} \log \relax (3) + 4 \, {\left (4 \, x + e^{x} + 4 \, \log \relax (3)\right )} \log \left (2 \, \log \relax (2)\right ) + 5 \, x\right ) - \log \left (x + \log \relax (3)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.39, size = 61, normalized size = 2.44 \begin {gather*} \log \left (x^{2} + x \log \relax (3) + 16 \, x \log \relax (2) + 4 \, e^{x} \log \relax (2) + 16 \, \log \relax (3) \log \relax (2) + 16 \, x \log \left (\log \relax (2)\right ) + 4 \, e^{x} \log \left (\log \relax (2)\right ) + 16 \, \log \relax (3) \log \left (\log \relax (2)\right ) + 5 \, x + 5 \, \log \relax (3)\right ) - \log \left (x + \log \relax (3)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.36, size = 51, normalized size = 2.04
method | result | size |
norman | \(-\ln \left (\ln \relax (3)+x \right )+\ln \left (16 \ln \relax (3) \ln \left (2 \ln \relax (2)\right )+x \ln \relax (3)+16 x \ln \left (2 \ln \relax (2)\right )+4 \,{\mathrm e}^{x} \ln \left (2 \ln \relax (2)\right )+x^{2}+5 \ln \relax (3)+5 x \right )\) | \(51\) |
risch | \(-\ln \left (\ln \relax (3)+x \right )+\ln \left ({\mathrm e}^{x}+\frac {16 \ln \relax (2) \ln \relax (3)+16 x \ln \relax (2)+16 \ln \relax (3) \ln \left (\ln \relax (2)\right )+x \ln \relax (3)+16 x \ln \left (\ln \relax (2)\right )+x^{2}+5 \ln \relax (3)+5 x}{4 \ln \relax (2)+4 \ln \left (\ln \relax (2)\right )}\right )\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 64, normalized size = 2.56 \begin {gather*} -\log \left (x + \log \relax (3)\right ) + \log \left (\frac {x^{2} + x {\left (\log \relax (3) + 16 \, \log \relax (2) + 16 \, \log \left (\log \relax (2)\right ) + 5\right )} + 4 \, {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} e^{x} + {\left (16 \, \log \left (\log \relax (2)\right ) + 5\right )} \log \relax (3) + 16 \, \log \relax (3) \log \relax (2)}{4 \, {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {2\,x\,\ln \relax (3)+{\ln \relax (3)}^2+x^2+\ln \left (2\,\ln \relax (2)\right )\,{\mathrm {e}}^x\,\left (4\,x+4\,\ln \relax (3)-4\right )}{{\ln \relax (3)}^2\,\left (x+5\right )+\ln \relax (3)\,\left (2\,x^2+10\,x\right )+5\,x^2+x^3+\ln \left (2\,\ln \relax (2)\right )\,\left ({\mathrm {e}}^x\,\left (4\,x+4\,\ln \relax (3)\right )+32\,x\,\ln \relax (3)+16\,{\ln \relax (3)}^2+16\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.60, size = 73, normalized size = 2.92 \begin {gather*} - \log {\left (x + \log {\relax (3 )} \right )} + \log {\left (\frac {x^{2} + 16 x \log {\left (\log {\relax (2 )} \right )} + x \log {\relax (3 )} + 5 x + 16 x \log {\relax (2 )} + 16 \log {\relax (3 )} \log {\left (\log {\relax (2 )} \right )} + 5 \log {\relax (3 )} + 16 \log {\relax (2 )} \log {\relax (3 )}}{4 \log {\left (\log {\relax (2 )} \right )} + 4 \log {\relax (2 )}} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________