Optimal. Leaf size=35 \[ 3+\frac {5-x}{x \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 20.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x+x^2+e^{x^2} \left (10 x^3-2 x^4+e^3 \left (-10 x^2+2 x^3\right )\right )+\left (-20 e^3+e^{x^2} \left (5 e^3-5 x\right )+20 x+\left (-5 e^3+5 x\right ) \log \left (e^3-x\right )\right ) \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}{\left (4 e^3 x^2-4 x^3+e^{x^2} \left (-e^3 x^2+x^3\right )+\left (e^3 x^2-x^3\right ) \log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {(-5+x) x \left (-1-2 e^{3+x^2} x+2 e^{x^2} x^2\right )}{\left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right )}-5 \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}{x^2 \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx\\ &=\int \left (-\frac {(-5+x) \left (-1-8 e^3 x+8 x^2-2 e^3 x \log \left (e^3-x\right )+2 x^2 \log \left (e^3-x\right )\right )}{x \left (-e^3+x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}+\frac {10 x^2-2 x^3-5 \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}{x^2 \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}\right ) \, dx\\ &=-\int \frac {(-5+x) \left (-1-8 e^3 x+8 x^2-2 e^3 x \log \left (e^3-x\right )+2 x^2 \log \left (e^3-x\right )\right )}{x \left (-e^3+x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx+\int \frac {10 x^2-2 x^3-5 \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}{x^2 \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx\\ &=-\int \left (\frac {\left (-5+e^3\right ) \left (1+8 e^3 x-8 x^2+2 e^3 x \log \left (e^3-x\right )-2 x^2 \log \left (e^3-x\right )\right )}{e^3 \left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}-\frac {5 \left (1+8 e^3 x-8 x^2+2 e^3 x \log \left (e^3-x\right )-2 x^2 \log \left (e^3-x\right )\right )}{e^3 x \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}\right ) \, dx+\int \left (-\frac {2 (-5+x)}{\log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}-\frac {5}{x^2 \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-5+x}{\log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx\right )-5 \int \frac {1}{x^2 \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx+\frac {5 \int \frac {1+8 e^3 x-8 x^2+2 e^3 x \log \left (e^3-x\right )-2 x^2 \log \left (e^3-x\right )}{x \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx}{e^3}-\frac {\left (-5+e^3\right ) \int \frac {1+8 e^3 x-8 x^2+2 e^3 x \log \left (e^3-x\right )-2 x^2 \log \left (e^3-x\right )}{\left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx}{e^3}\\ &=-\left (2 \int \left (-\frac {5}{\log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}+\frac {x}{\log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}\right ) \, dx\right )-5 \int \frac {1}{x^2 \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \, dx+\frac {5 \int \left (\frac {8 e^3}{\left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}+\frac {1}{x \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}-\frac {8 x}{\left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}+\frac {2 e^3 \log \left (e^3-x\right )}{\left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}-\frac {2 x \log \left (e^3-x\right )}{\left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}\right ) \, dx}{e^3}-\frac {\left (-5+e^3\right ) \int \left (\frac {1}{\left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}+\frac {8 e^3 x}{\left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}-\frac {8 x^2}{\left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}+\frac {2 e^3 x \log \left (e^3-x\right )}{\left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}-\frac {2 x^2 \log \left (e^3-x\right )}{\left (e^3-x\right ) \left (-4+e^{x^2}-\log \left (e^3-x\right )\right ) \log ^2\left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )}\right ) \, dx}{e^3}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 33, normalized size = 0.94 \begin {gather*} \frac {5-x}{x \log \left (\frac {5}{4-e^{x^2}+\log \left (e^3-x\right )}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 30, normalized size = 0.86 \begin {gather*} -\frac {x - 5}{x \log \left (-\frac {5}{e^{\left (x^{2}\right )} - \log \left (-x + e^{3}\right ) - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.98, size = 569, normalized size = 16.26 \begin {gather*} \frac {2 \, {\left (2 \, x \log \relax (5) - x \log \left (\frac {1}{2} \, \pi ^{2} \mathrm {sgn}\left (x - e^{3}\right ) + \frac {1}{2} \, \pi ^{2} - 2 \, e^{\left (x^{2}\right )} \log \left ({\left | x - e^{3} \right |}\right ) + \log \left ({\left | x - e^{3} \right |}\right )^{2} + e^{\left (2 \, x^{2}\right )} - 8 \, e^{\left (x^{2}\right )} + 8 \, \log \left ({\left | x - e^{3} \right |}\right ) + 16\right ) - 10 \, \log \relax (5) + 5 \, \log \left (\frac {1}{2} \, \pi ^{2} \mathrm {sgn}\left (x - e^{3}\right ) + \frac {1}{2} \, \pi ^{2} - 2 \, e^{\left (x^{2}\right )} \log \left ({\left | x - e^{3} \right |}\right ) + \log \left ({\left | x - e^{3} \right |}\right )^{2} + e^{\left (2 \, x^{2}\right )} - 8 \, e^{\left (x^{2}\right )} + 8 \, \log \left ({\left | x - e^{3} \right |}\right ) + 16\right )\right )}}{4 \, \pi ^{2} x \mathrm {sgn}\left (\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )\right ) \mathrm {sgn}\left (e^{\left (x^{2}\right )} - \log \left ({\left | x - e^{3} \right |}\right ) - 4\right ) + 4 \, \pi x \arctan \left (\frac {\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )}{2 \, {\left (e^{\left (x^{2}\right )} - \log \left ({\left | x - e^{3} \right |}\right ) - 4\right )}}\right ) \mathrm {sgn}\left (\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )\right ) \mathrm {sgn}\left (e^{\left (x^{2}\right )} - \log \left ({\left | x - e^{3} \right |}\right ) - 4\right ) - 4 \, \pi ^{2} x \mathrm {sgn}\left (\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )\right ) - 4 \, \pi x \arctan \left (\frac {\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )}{2 \, {\left (e^{\left (x^{2}\right )} - \log \left ({\left | x - e^{3} \right |}\right ) - 4\right )}}\right ) \mathrm {sgn}\left (\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )\right ) + 2 \, \pi ^{2} x \mathrm {sgn}\left (e^{\left (x^{2}\right )} - \log \left ({\left | x - e^{3} \right |}\right ) - 4\right ) - 6 \, \pi ^{2} x - 8 \, \pi x \arctan \left (\frac {\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )}{2 \, {\left (e^{\left (x^{2}\right )} - \log \left ({\left | x - e^{3} \right |}\right ) - 4\right )}}\right ) - 4 \, x \arctan \left (\frac {\pi + \pi \mathrm {sgn}\left (x - e^{3}\right )}{2 \, {\left (e^{\left (x^{2}\right )} - \log \left ({\left | x - e^{3} \right |}\right ) - 4\right )}}\right )^{2} - 4 \, x \log \relax (5)^{2} + 4 \, x \log \relax (5) \log \left (\frac {1}{2} \, \pi ^{2} \mathrm {sgn}\left (x - e^{3}\right ) + \frac {1}{2} \, \pi ^{2} - 2 \, e^{\left (x^{2}\right )} \log \left ({\left | x - e^{3} \right |}\right ) + \log \left ({\left | x - e^{3} \right |}\right )^{2} + e^{\left (2 \, x^{2}\right )} - 8 \, e^{\left (x^{2}\right )} + 8 \, \log \left ({\left | x - e^{3} \right |}\right ) + 16\right ) - x \log \left (\frac {1}{2} \, \pi ^{2} \mathrm {sgn}\left (x - e^{3}\right ) + \frac {1}{2} \, \pi ^{2} - 2 \, e^{\left (x^{2}\right )} \log \left ({\left | x - e^{3} \right |}\right ) + \log \left ({\left | x - e^{3} \right |}\right )^{2} + e^{\left (2 \, x^{2}\right )} - 8 \, e^{\left (x^{2}\right )} + 8 \, \log \left ({\left | x - e^{3} \right |}\right ) + 16\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 92, normalized size = 2.63
method | result | size |
risch | \(\frac {2 i \left (x -5\right )}{x \left (-2 \pi \mathrm {csgn}\left (\frac {i}{-\ln \left (-x +{\mathrm e}^{3}\right )-4+{\mathrm e}^{x^{2}}}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i}{-\ln \left (-x +{\mathrm e}^{3}\right )-4+{\mathrm e}^{x^{2}}}\right )^{3}+2 \pi -2 i \ln \relax (5)+2 i \ln \left (-\ln \left (-x +{\mathrm e}^{3}\right )-4+{\mathrm e}^{x^{2}}\right )\right )}\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.85, size = 31, normalized size = 0.89 \begin {gather*} -\frac {x - 5}{x \log \relax (5) - x \log \left (-e^{\left (x^{2}\right )} + \log \left (-x + e^{3}\right ) + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.53, size = 20, normalized size = 0.57 \begin {gather*} \frac {5 - x}{x \log {\left (\frac {5}{- e^{x^{2}} + \log {\left (- x + e^{3} \right )} + 4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________