Optimal. Leaf size=25 \[ \frac {e^{\frac {1}{2} x^2 \left (24-e^3+x\right )}}{1+e^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {6, 12, 1593, 6688, 6706} \begin {gather*} \frac {e^{\frac {1}{2} x^2 \left (x-e^3+24\right )}}{1+e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1593
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{2} \left (24 x^2-e^3 x^2+x^3\right )} \left (\left (48-2 e^3\right ) x+3 x^2\right )}{2+2 e^2} \, dx\\ &=\frac {\int e^{\frac {1}{2} \left (24 x^2-e^3 x^2+x^3\right )} \left (\left (48-2 e^3\right ) x+3 x^2\right ) \, dx}{2 \left (1+e^2\right )}\\ &=\frac {\int e^{\frac {1}{2} \left (24 x^2-e^3 x^2+x^3\right )} x \left (48-2 e^3+3 x\right ) \, dx}{2 \left (1+e^2\right )}\\ &=\frac {\int e^{\frac {1}{2} x^2 \left (24-e^3+x\right )} x \left (48-2 e^3+3 x\right ) \, dx}{2 \left (1+e^2\right )}\\ &=\frac {e^{\frac {1}{2} x^2 \left (24-e^3+x\right )}}{1+e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 25, normalized size = 1.00 \begin {gather*} \frac {e^{\frac {1}{2} x^2 \left (24-e^3+x\right )}}{1+e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 26, normalized size = 1.04 \begin {gather*} \frac {e^{\left (\frac {1}{2} \, x^{3} - \frac {1}{2} \, x^{2} e^{3} + 12 \, x^{2}\right )}}{e^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 26, normalized size = 1.04 \begin {gather*} \frac {e^{\left (\frac {1}{2} \, x^{3} - \frac {1}{2} \, x^{2} e^{3} + 12 \, x^{2}\right )}}{e^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 0.96
method | result | size |
risch | \(\frac {2 \,{\mathrm e}^{-\frac {x^{2} \left ({\mathrm e}^{3}-x -24\right )}{2}}}{2 \,{\mathrm e}^{2}+2}\) | \(24\) |
gosper | \(\frac {{\mathrm e}^{-\frac {x^{2} {\mathrm e}^{3}}{2}+\frac {x^{3}}{2}+12 x^{2}}}{{\mathrm e}^{2}+1}\) | \(27\) |
norman | \(\frac {{\mathrm e}^{-\frac {x^{2} {\mathrm e}^{3}}{2}+\frac {x^{3}}{2}+12 x^{2}}}{{\mathrm e}^{2}+1}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 26, normalized size = 1.04 \begin {gather*} \frac {e^{\left (\frac {1}{2} \, x^{3} - \frac {1}{2} \, x^{2} e^{3} + 12 \, x^{2}\right )}}{e^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 27, normalized size = 1.08 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^3}{2}}\,{\mathrm {e}}^{\frac {x^3}{2}}\,{\mathrm {e}}^{12\,x^2}}{{\mathrm {e}}^2+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 24, normalized size = 0.96 \begin {gather*} \frac {e^{\frac {x^{3}}{2} - \frac {x^{2} e^{3}}{2} + 12 x^{2}}}{1 + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________