Optimal. Leaf size=29 \[ 8 \left (1+e^{\frac {e^3}{x}} \left (-4+x-3 \left (-5+\frac {x}{\log (2)}\right )\right )^3\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.50, antiderivative size = 30, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 3, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {6688, 12, 2288} \begin {gather*} -\frac {8 e^{\frac {e^3}{x}} (x (3-\log (2))-\log (2048))^3}{\log ^3(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{\frac {e^3}{x}} (x (-3+\log (2))+\log (2048))^2 \left (e^3 x (3-\log (2))-x^2 (9-\log (8))-e^3 \log (2048)\right )}{x^2 \log ^3(2)} \, dx\\ &=\frac {8 \int \frac {e^{\frac {e^3}{x}} (x (-3+\log (2))+\log (2048))^2 \left (e^3 x (3-\log (2))-x^2 (9-\log (8))-e^3 \log (2048)\right )}{x^2} \, dx}{\log ^3(2)}\\ &=-\frac {8 e^{\frac {e^3}{x}} (x (3-\log (2))-\log (2048))^3}{\log ^3(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 0.90 \begin {gather*} \frac {8 e^{\frac {e^3}{x}} (x (-3+\log (2))+\log (2048))^3}{\log ^3(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 29, normalized size = 1.00 \begin {gather*} 8 \, e^{\left (\frac {3 \, x \log \left (\frac {{\left (x + 11\right )} \log \relax (2) - 3 \, x}{\log \relax (2)}\right ) + e^{3}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.44, size = 171, normalized size = 5.90 \begin {gather*} \frac {8 \, {\left (e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)^{3} - 9 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)^{2} + \frac {33 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)^{3}}{x} + 27 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2) - \frac {198 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)^{2}}{x} + \frac {363 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)^{3}}{x^{2}} + \frac {297 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)}{x} - \frac {1089 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)^{2}}{x^{2}} + \frac {1331 \, e^{\left (\frac {e^{3}}{x} + 12\right )} \log \relax (2)^{3}}{x^{3}} - 27 \, e^{\left (\frac {e^{3}}{x} + 12\right )}\right )} x^{3} e^{\left (-12\right )}}{\log \relax (2)^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 30, normalized size = 1.03
method | result | size |
norman | \(8 \,{\mathrm e}^{\frac {3 x \ln \left (\frac {\left (11+x \right ) \ln \relax (2)-3 x}{\ln \relax (2)}\right )+{\mathrm e}^{3}}{x}}\) | \(30\) |
gosper | \(8 \,{\mathrm e}^{\frac {3 x \ln \left (\frac {x \ln \relax (2)+11 \ln \relax (2)-3 x}{\ln \relax (2)}\right )+{\mathrm e}^{3}}{x}}\) | \(32\) |
risch | \(\frac {8 \left (x^{3} \ln \relax (2)^{3}+33 x^{2} \ln \relax (2)^{3}-9 x^{3} \ln \relax (2)^{2}+363 x \ln \relax (2)^{3}-198 x^{2} \ln \relax (2)^{2}+27 x^{3} \ln \relax (2)+1331 \ln \relax (2)^{3}-1089 x \ln \relax (2)^{2}+297 x^{2} \ln \relax (2)-27 x^{3}\right ) \left (\left (11+x \right ) \ln \relax (2)-3 x \right )^{3} {\mathrm e}^{\frac {{\mathrm e}^{3}}{x}}}{\left (x \ln \relax (2)+11 \ln \relax (2)-3 x \right )^{3} \ln \relax (2)^{3}}\) | \(115\) |
default | \(\text {Expression too large to display}\) | \(3586\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {8 \, {\left ({\left (\log \relax (2)^{3} - 9 \, \log \relax (2)^{2} + 27 \, \log \relax (2) - 27\right )} x^{3} + 33 \, {\left (\log \relax (2)^{3} - 6 \, \log \relax (2)^{2} + 9 \, \log \relax (2)\right )} x^{2} + 363 \, {\left (\log \relax (2)^{3} - 3 \, \log \relax (2)^{2}\right )} x\right )} e^{\left (\frac {e^{3}}{x}\right )}}{\log \relax (2)^{3}} - 10648 \, \int \frac {e^{\left (\frac {e^{3}}{x} + 3\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^3+3\,x\,\ln \left (-\frac {3\,x-\ln \relax (2)\,\left (x+11\right )}{\ln \relax (2)}\right )}{x}}\,\left (24\,x\,{\mathrm {e}}^3+\ln \relax (2)\,\left (24\,x^2-{\mathrm {e}}^3\,\left (8\,x+88\right )\right )-72\,x^2\right )}{\ln \relax (2)\,\left (x^3+11\,x^2\right )-3\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 95.25, size = 26, normalized size = 0.90 \begin {gather*} 8 e^{\frac {3 x \log {\left (\frac {- 3 x + \left (x + 11\right ) \log {\relax (2 )}}{\log {\relax (2 )}} \right )} + e^{3}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________