Optimal. Leaf size=27 \[ \frac {e+\frac {e^{-x}}{2}}{\frac {x}{-8+x}+8 x^2} \]
________________________________________________________________________________________
Rubi [C] time = 5.72, antiderivative size = 621, normalized size of antiderivative = 23.00, number of steps used = 100, number of rules used = 10, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {6741, 12, 6742, 2177, 2178, 2270, 2268, 1646, 1586, 30} \begin {gather*} -\frac {4}{127} \left (8128+511 \sqrt {254}\right ) e^{\frac {1}{4} \left (\sqrt {254}-16\right )} \text {Ei}\left (\frac {1}{4} \left (-4 x-\sqrt {254}+16\right )\right )+2 \left (127+8 \sqrt {254}\right ) e^{\frac {1}{4} \left (\sqrt {254}-16\right )} \text {Ei}\left (\frac {1}{4} \left (-4 x-\sqrt {254}+16\right )\right )-\frac {255 \left (16-\sqrt {254}\right ) e^{\frac {1}{4} \left (\sqrt {254}-16\right )} \text {Ei}\left (\frac {1}{4} \left (-4 x-\sqrt {254}+16\right )\right )}{2032}-\frac {e^{\frac {1}{4} \left (\sqrt {254}-16\right )} \text {Ei}\left (\frac {1}{4} \left (-4 x-\sqrt {254}+16\right )\right )}{1016 \sqrt {254}}-\frac {500}{127} \sqrt {\frac {2}{127}} e^{\frac {1}{4} \left (\sqrt {254}-16\right )} \text {Ei}\left (\frac {1}{4} \left (-4 x-\sqrt {254}+16\right )\right )+\frac {509}{127} e^{\frac {1}{4} \left (\sqrt {254}-16\right )} \text {Ei}\left (\frac {1}{4} \left (-4 x-\sqrt {254}+16\right )\right )-\frac {255 \left (16+\sqrt {254}\right ) e^{-4-\frac {\sqrt {\frac {127}{2}}}{2}} \text {Ei}\left (\frac {1}{4} \left (-4 x+\sqrt {254}+16\right )\right )}{2032}+2 \left (127-8 \sqrt {254}\right ) e^{-4-\frac {\sqrt {\frac {127}{2}}}{2}} \text {Ei}\left (\frac {1}{4} \left (-4 x+\sqrt {254}+16\right )\right )-\frac {4}{127} \left (8128-511 \sqrt {254}\right ) e^{-4-\frac {\sqrt {\frac {127}{2}}}{2}} \text {Ei}\left (\frac {1}{4} \left (-4 x+\sqrt {254}+16\right )\right )+\frac {e^{-4-\frac {\sqrt {\frac {127}{2}}}{2}} \text {Ei}\left (\frac {1}{4} \left (-4 x+\sqrt {254}+16\right )\right )}{1016 \sqrt {254}}+\frac {500}{127} \sqrt {\frac {2}{127}} e^{-4-\frac {\sqrt {\frac {127}{2}}}{2}} \text {Ei}\left (\frac {1}{4} \left (-4 x+\sqrt {254}+16\right )\right )+\frac {509}{127} e^{-4-\frac {\sqrt {\frac {127}{2}}}{2}} \text {Ei}\left (\frac {1}{4} \left (-4 x+\sqrt {254}+16\right )\right )-\frac {e (511-64 x)}{8 x^2-64 x+1}+\frac {255 \left (16-\sqrt {254}\right ) e^{-x}}{508 \left (-4 x-\sqrt {254}+16\right )}-\frac {2036 e^{-x}}{127 \left (-4 x-\sqrt {254}+16\right )}+\frac {255 \left (16+\sqrt {254}\right ) e^{-x}}{508 \left (-4 x+\sqrt {254}+16\right )}-\frac {2036 e^{-x}}{127 \left (-4 x+\sqrt {254}+16\right )}-\frac {4 e^{-x}}{x}-\frac {8 e}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 1586
Rule 1646
Rule 2177
Rule 2178
Rule 2268
Rule 2270
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (8-1016 x-257 x^2+112 x^3-8 x^4+e^{1+x} \left (16-2048 x+512 x^2-32 x^3\right )\right )}{2 x^2 \left (1-64 x+8 x^2\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{-x} \left (8-1016 x-257 x^2+112 x^3-8 x^4+e^{1+x} \left (16-2048 x+512 x^2-32 x^3\right )\right )}{x^2 \left (1-64 x+8 x^2\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {257 e^{-x}}{\left (1-64 x+8 x^2\right )^2}+\frac {8 e^{-x}}{x^2 \left (1-64 x+8 x^2\right )^2}-\frac {1016 e^{-x}}{x \left (1-64 x+8 x^2\right )^2}+\frac {112 e^{-x} x}{\left (1-64 x+8 x^2\right )^2}-\frac {8 e^{-x} x^2}{\left (1-64 x+8 x^2\right )^2}-\frac {16 e \left (-1+128 x-32 x^2+2 x^3\right )}{x^2 \left (1-64 x+8 x^2\right )^2}\right ) \, dx\\ &=4 \int \frac {e^{-x}}{x^2 \left (1-64 x+8 x^2\right )^2} \, dx-4 \int \frac {e^{-x} x^2}{\left (1-64 x+8 x^2\right )^2} \, dx+56 \int \frac {e^{-x} x}{\left (1-64 x+8 x^2\right )^2} \, dx-\frac {257}{2} \int \frac {e^{-x}}{\left (1-64 x+8 x^2\right )^2} \, dx-508 \int \frac {e^{-x}}{x \left (1-64 x+8 x^2\right )^2} \, dx-(8 e) \int \frac {-1+128 x-32 x^2+2 x^3}{x^2 \left (1-64 x+8 x^2\right )^2} \, dx\\ &=-\frac {e (511-64 x)}{1-64 x+8 x^2}-4 \int \left (\frac {e^{-x} (-1+64 x)}{8 \left (1-64 x+8 x^2\right )^2}+\frac {e^{-x}}{8 \left (1-64 x+8 x^2\right )}\right ) \, dx+4 \int \left (\frac {e^{-x}}{x^2}+\frac {128 e^{-x}}{x}-\frac {8 e^{-x} (-511+64 x)}{\left (1-64 x+8 x^2\right )^2}-\frac {8 e^{-x} (-1023+128 x)}{1-64 x+8 x^2}\right ) \, dx+56 \int \left (\frac {\left (64+4 \sqrt {254}\right ) e^{-x}}{254 \left (64+4 \sqrt {254}-16 x\right )^2}+\frac {4 \sqrt {\frac {2}{127}} e^{-x}}{127 \left (64+4 \sqrt {254}-16 x\right )}+\frac {\left (64-4 \sqrt {254}\right ) e^{-x}}{254 \left (-64+4 \sqrt {254}+16 x\right )^2}+\frac {4 \sqrt {\frac {2}{127}} e^{-x}}{127 \left (-64+4 \sqrt {254}+16 x\right )}\right ) \, dx-\frac {257}{2} \int \left (\frac {8 e^{-x}}{127 \left (64+4 \sqrt {254}-16 x\right )^2}+\frac {\sqrt {\frac {2}{127}} e^{-x}}{127 \left (64+4 \sqrt {254}-16 x\right )}+\frac {8 e^{-x}}{127 \left (-64+4 \sqrt {254}+16 x\right )^2}+\frac {\sqrt {\frac {2}{127}} e^{-x}}{127 \left (-64+4 \sqrt {254}+16 x\right )}\right ) \, dx-508 \int \left (\frac {e^{-x}}{x}-\frac {8 e^{-x} (-8+x)}{\left (1-64 x+8 x^2\right )^2}-\frac {8 e^{-x} (-8+x)}{1-64 x+8 x^2}\right ) \, dx+\frac {1}{508} e \int \frac {4064-260096 x+32512 x^2}{x^2 \left (1-64 x+8 x^2\right )} \, dx\\ &=-\frac {e (511-64 x)}{1-64 x+8 x^2}-\frac {1}{2} \int \frac {e^{-x} (-1+64 x)}{\left (1-64 x+8 x^2\right )^2} \, dx-\frac {1}{2} \int \frac {e^{-x}}{1-64 x+8 x^2} \, dx+4 \int \frac {e^{-x}}{x^2} \, dx-\frac {1028}{127} \int \frac {e^{-x}}{\left (64+4 \sqrt {254}-16 x\right )^2} \, dx-\frac {1028}{127} \int \frac {e^{-x}}{\left (-64+4 \sqrt {254}+16 x\right )^2} \, dx-32 \int \frac {e^{-x} (-511+64 x)}{\left (1-64 x+8 x^2\right )^2} \, dx-32 \int \frac {e^{-x} (-1023+128 x)}{1-64 x+8 x^2} \, dx-508 \int \frac {e^{-x}}{x} \, dx+512 \int \frac {e^{-x}}{x} \, dx+4064 \int \frac {e^{-x} (-8+x)}{\left (1-64 x+8 x^2\right )^2} \, dx+4064 \int \frac {e^{-x} (-8+x)}{1-64 x+8 x^2} \, dx+\frac {1}{127} \left (224 \sqrt {\frac {2}{127}}\right ) \int \frac {e^{-x}}{64+4 \sqrt {254}-16 x} \, dx+\frac {1}{127} \left (224 \sqrt {\frac {2}{127}}\right ) \int \frac {e^{-x}}{-64+4 \sqrt {254}+16 x} \, dx-\frac {257 \int \frac {e^{-x}}{64+4 \sqrt {254}-16 x} \, dx}{127 \sqrt {254}}-\frac {257 \int \frac {e^{-x}}{-64+4 \sqrt {254}+16 x} \, dx}{127 \sqrt {254}}+\frac {1}{127} \left (112 \left (16-\sqrt {254}\right )\right ) \int \frac {e^{-x}}{\left (-64+4 \sqrt {254}+16 x\right )^2} \, dx+\frac {1}{127} \left (112 \left (16+\sqrt {254}\right )\right ) \int \frac {e^{-x}}{\left (64+4 \sqrt {254}-16 x\right )^2} \, dx+\frac {1}{508} e \int \frac {4064}{x^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.76, size = 36, normalized size = 1.33 \begin {gather*} \frac {e^{-x} \left (1+2 e^{1+x}\right ) (-8+x)}{2 x \left (1-64 x+8 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 38, normalized size = 1.41 \begin {gather*} \frac {{\left ({\left (x - 8\right )} e + 2 \, {\left (x - 8\right )} e^{\left (x + 2\right )}\right )} e^{\left (-x - 1\right )}}{2 \, {\left (8 \, x^{3} - 64 \, x^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 38, normalized size = 1.41 \begin {gather*} \frac {2 \, x e + x e^{\left (-x\right )} - 16 \, e - 8 \, e^{\left (-x\right )}}{2 \, {\left (8 \, x^{3} - 64 \, x^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 50, normalized size = 1.85
method | result | size |
norman | \(\frac {\left (-4+64 x^{2} {\mathrm e} \,{\mathrm e}^{x}-8 x^{3} {\mathrm e} \,{\mathrm e}^{x}+\frac {x}{2}-8 \,{\mathrm e} \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{x \left (8 x^{2}-64 x +1\right )}\) | \(50\) |
risch | \(\frac {x \,{\mathrm e}-8 \,{\mathrm e}}{\left (8 x^{2}-64 x +1\right ) x}+\frac {\left (-8+x \right ) {\mathrm e}^{-x}}{2 \left (8 x^{2}-64 x +1\right ) x}\) | \(53\) |
default | \(\frac {1028 \,{\mathrm e} x}{127 \left (x^{2}-8 x +\frac {1}{8}\right )}-\frac {8176 \,{\mathrm e}}{127 \left (x^{2}-8 x +\frac {1}{8}\right )}-\frac {24 \,{\mathrm e} \sqrt {254}\, \arctanh \left (\frac {\left (16 x -64\right ) \sqrt {254}}{1016}\right )}{16129}-\frac {8 \,{\mathrm e}}{x}-\frac {4 \,{\mathrm e}^{-x} \left (2036 x^{2}-16272 x +127\right )}{127 \left (8 x^{2}-64 x +1\right ) x}+256 \,{\mathrm e} \left (-\frac {16 x -64}{4064 \left (8 x^{2}-64 x +1\right )}+\frac {\sqrt {254}\, \arctanh \left (\frac {\left (16 x -64\right ) \sqrt {254}}{1016}\right )}{129032}\right )-16 \,{\mathrm e} \left (-\frac {64 x -2}{4064 \left (8 x^{2}-64 x +1\right )}+\frac {\sqrt {254}\, \arctanh \left (\frac {\left (16 x -64\right ) \sqrt {254}}{1016}\right )}{32258}\right )+\frac {2 \,{\mathrm e}^{-x} \left (32 x -255\right )}{8 x^{2}-64 x +1}+\frac {257 \,{\mathrm e}^{-x} \left (x -4\right )}{508 \left (8 x^{2}-64 x +1\right )}-\frac {7 \,{\mathrm e}^{-x} \left (32 x -1\right )}{254 \left (8 x^{2}-64 x +1\right )}+\frac {{\mathrm e}^{-x} \left (255 x -4\right )}{4064 x^{2}-32512 x +508}\) | \(257\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 34, normalized size = 1.26 \begin {gather*} \frac {2 \, x e + {\left (x - 8\right )} e^{\left (-x\right )} - 16 \, e}{2 \, {\left (8 \, x^{3} - 64 \, x^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 40, normalized size = 1.48 \begin {gather*} -\frac {4\,{\mathrm {e}}^{-x}+8\,\mathrm {e}-x\,\left (\frac {{\mathrm {e}}^{-x}}{2}+\mathrm {e}\right )}{x\,\left (8\,x^2-64\,x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 41, normalized size = 1.52 \begin {gather*} \frac {\left (x - 8\right ) e^{- x}}{16 x^{3} - 128 x^{2} + 2 x} - \frac {- e x + 8 e}{8 x^{3} - 64 x^{2} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________