Optimal. Leaf size=22 \[ \frac {1}{3} \left (\frac {x}{4}+3 e^{-x} (e+4 x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 33, normalized size of antiderivative = 1.50, number of steps used = 7, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {12, 6741, 6742, 2194, 2176} \begin {gather*} 4 e^{-x} x+\frac {x}{12}-(4-e) e^{-x}+4 e^{-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int e^{-x} \left (48-12 e+e^x-48 x\right ) \, dx\\ &=\frac {1}{12} \int e^{-x} \left (48 \left (1-\frac {e}{4}\right )+e^x-48 x\right ) \, dx\\ &=\frac {1}{12} \int \left (1-12 (-4+e) e^{-x}-48 e^{-x} x\right ) \, dx\\ &=\frac {x}{12}-4 \int e^{-x} x \, dx+(4-e) \int e^{-x} \, dx\\ &=-\left ((4-e) e^{-x}\right )+\frac {x}{12}+4 e^{-x} x-4 \int e^{-x} \, dx\\ &=4 e^{-x}-(4-e) e^{-x}+\frac {x}{12}+4 e^{-x} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 18, normalized size = 0.82 \begin {gather*} \frac {1}{12} \left (x+12 e^{-x} (e+4 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 18, normalized size = 0.82 \begin {gather*} \frac {1}{12} \, {\left (x e^{x} + 48 \, x + 12 \, e\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 17, normalized size = 0.77 \begin {gather*} 4 \, x e^{\left (-x\right )} + \frac {1}{12} \, x + e^{\left (-x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.77
method | result | size |
norman | \(\left (4 x +\frac {{\mathrm e}^{x} x}{12}+{\mathrm e}\right ) {\mathrm e}^{-x}\) | \(17\) |
default | \(\frac {x}{12}+4 x \,{\mathrm e}^{-x}+{\mathrm e} \,{\mathrm e}^{-x}\) | \(19\) |
risch | \(\frac {x}{12}+\frac {\left (12 \,{\mathrm e}+48 x \right ) {\mathrm e}^{-x}}{12}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 25, normalized size = 1.14 \begin {gather*} 4 \, {\left (x + 1\right )} e^{\left (-x\right )} + \frac {1}{12} \, x - 4 \, e^{\left (-x\right )} + e^{\left (-x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 18, normalized size = 0.82 \begin {gather*} \frac {x}{12}+{\mathrm {e}}^{-x}\,\mathrm {e}+4\,x\,{\mathrm {e}}^{-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.55 \begin {gather*} \frac {x}{12} + \left (4 x + e\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________