Optimal. Leaf size=27 \[ \frac {1}{4} \left (1-x+\log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-8 x+8 x^2+\left (3 x-4 x^2+x^3\right ) \log (x)\right ) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )+\left (-6+8 x-2 x^2+\left (2 x-2 x^2\right ) \log (x)\right ) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )+\left (-8 x+\left (3 x-x^2\right ) \log (x)\right ) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right ) \log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )+(-6+2 x+2 x \log (x)) \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{\left (16 x+\left (-6 x+2 x^2\right ) \log (x)\right ) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (x (8+(-3+x) \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )-2 (-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )\right ) \left (-1+x-\log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )\right )}{2 x (8+(-3+x) \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx\\ &=\frac {1}{2} \int \frac {\left (x (8+(-3+x) \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )-2 (-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )\right ) \left (-1+x-\log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )\right )}{x (8+(-3+x) \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx\\ &=\frac {1}{2} \int \left (-1+x-\frac {2 (-1+x) (-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}-\log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )+\frac {2 (-3+x+x \log (x)) \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}\right ) \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}-\frac {1}{2} \int \log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right ) \, dx-\int \frac {(-1+x) (-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {(-3+x+x \log (x)) \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}-\frac {1}{2} \int \log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right ) \, dx-\int \left (\frac {(-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}-\frac {(-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}\right ) \, dx+\int \left (\frac {\log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}-\frac {3 \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}+\frac {\log (x) \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}\right ) \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}-\frac {1}{2} \int \log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right ) \, dx-3 \int \frac {\log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx-\int \frac {(-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {(-3+x+x \log (x)) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log (x) \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}-\frac {1}{2} \int \log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right ) \, dx-3 \int \frac {\log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log (x) \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \left (\frac {\log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}-\frac {3 \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}+\frac {\log (x) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}\right ) \, dx-\int \left (-\frac {3 \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}+\frac {x \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}+\frac {x \log (x) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )}\right ) \, dx\\ &=-\frac {x}{2}+\frac {x^2}{4}-\frac {1}{2} \int \log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right ) \, dx+3 \int \frac {\log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx-3 \int \frac {\log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx-3 \int \frac {\log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{x (8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx-\int \frac {x \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log (x) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx-\int \frac {x \log (x) \log \left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx+\int \frac {\log (x) \log ^3\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )}{(8-3 \log (x)+x \log (x)) \log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 47, normalized size = 1.74 \begin {gather*} \frac {1}{4} \left ((-2+x) x-2 (-1+x) \log ^2\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )+\log ^4\left (\log \left (\frac {1}{3} (8+(-3+x) \log (x))\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 42, normalized size = 1.56 \begin {gather*} \frac {1}{4} \, \log \left (\log \left (\frac {1}{3} \, {\left (x - 3\right )} \log \relax (x) + \frac {8}{3}\right )\right )^{4} - \frac {1}{2} \, {\left (x - 1\right )} \log \left (\log \left (\frac {1}{3} \, {\left (x - 3\right )} \log \relax (x) + \frac {8}{3}\right )\right )^{2} + \frac {1}{4} \, x^{2} - \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.83, size = 54, normalized size = 2.00 \begin {gather*} \frac {1}{4} \, \log \left (-\log \relax (3) + \log \left (x \log \relax (x) - 3 \, \log \relax (x) + 8\right )\right )^{4} - \frac {1}{2} \, {\left (x - 1\right )} \log \left (-\log \relax (3) + \log \left (x \log \relax (x) - 3 \, \log \relax (x) + 8\right )\right )^{2} + \frac {1}{4} \, x^{2} - \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 44, normalized size = 1.63
method | result | size |
risch | \(\frac {\ln \left (\ln \left (\frac {\ln \relax (x ) \left (x -3\right )}{3}+\frac {8}{3}\right )\right )^{4}}{4}+\left (-\frac {x}{2}+\frac {1}{2}\right ) \ln \left (\ln \left (\frac {\ln \relax (x ) \left (x -3\right )}{3}+\frac {8}{3}\right )\right )^{2}+\frac {x^{2}}{4}-\frac {x}{2}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 50, normalized size = 1.85 \begin {gather*} \frac {1}{4} \, \log \left (-\log \relax (3) + \log \left ({\left (x - 3\right )} \log \relax (x) + 8\right )\right )^{4} - \frac {1}{2} \, {\left (x - 1\right )} \log \left (-\log \relax (3) + \log \left ({\left (x - 3\right )} \log \relax (x) + 8\right )\right )^{2} + \frac {1}{4} \, x^{2} - \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.22, size = 60, normalized size = 2.22 \begin {gather*} {\ln \left (\ln \left (\frac {\ln \relax (x)\,\left (x-3\right )}{3}+\frac {8}{3}\right )\right )}^2\,\left (\frac {\frac {3\,x^2}{2}-\frac {x^3}{2}}{x\,\left (x-3\right )}+\frac {1}{2}\right )-\frac {x}{2}+\frac {{\ln \left (\ln \left (\frac {\ln \relax (x)\,\left (x-3\right )}{3}+\frac {8}{3}\right )\right )}^4}{4}+\frac {x^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.53, size = 49, normalized size = 1.81 \begin {gather*} \frac {x^{2}}{4} - \frac {x}{2} + \left (\frac {1}{2} - \frac {x}{2}\right ) \log {\left (\log {\left (\frac {\left (x - 3\right ) \log {\relax (x )}}{3} + \frac {8}{3} \right )} \right )}^{2} + \frac {\log {\left (\log {\left (\frac {\left (x - 3\right ) \log {\relax (x )}}{3} + \frac {8}{3} \right )} \right )}^{4}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________