Optimal. Leaf size=28 \[ \frac {e^{-\frac {1}{4} e^{-e^2-e^3} x} \log (5 x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 1.27, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 9, number of rules used = 6, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 6742, 2177, 2178, 2197, 2554} \begin {gather*} \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2197
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-e^2-e^3-\frac {1}{4} e^{-e^2-e^3} x} \left (4 e^{e^2+e^3}+\left (-4 e^{e^2+e^3}-x\right ) \log (5 x)\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {4 e^{-\frac {1}{4} e^{-e^2-e^3} x}}{x^2}-\frac {e^{-e^2-e^3-\frac {1}{4} e^{-e^2-e^3} x} \left (4 e^{e^2+e^3}+x\right ) \log (5 x)}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{-e^2-e^3-\frac {1}{4} e^{-e^2-e^3} x} \left (4 e^{e^2+e^3}+x\right ) \log (5 x)}{x^2} \, dx\right )+\int \frac {e^{-\frac {1}{4} e^{-e^2-e^3} x}}{x^2} \, dx\\ &=-\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x}+\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}+\frac {1}{4} \int -\frac {4 e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x^2} \, dx-\frac {1}{4} e^{-e^2 (1+e)} \int \frac {e^{-\frac {1}{4} e^{-e^2-e^3} x}}{x} \, dx\\ &=-\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x}-\frac {1}{4} e^{-e^2 (1+e)} \text {Ei}\left (-\frac {1}{4} e^{-e^2 (1+e)} x\right )+\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}-\int \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x^2} \, dx\\ &=-\frac {1}{4} e^{-e^2 (1+e)} \text {Ei}\left (-\frac {1}{4} e^{-e^2 (1+e)} x\right )+\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}+\frac {1}{4} e^{-e^2 (1+e)} \int \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x}}{x} \, dx\\ &=\frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 25, normalized size = 0.89 \begin {gather*} \frac {e^{-\frac {1}{4} e^{-e^2 (1+e)} x} \log (5 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 41, normalized size = 1.46 \begin {gather*} \frac {e^{\left (-\frac {1}{4} \, {\left (4 \, {\left (e^{3} + e^{2}\right )} e^{\left (e^{3} + e^{2}\right )} + x\right )} e^{\left (-e^{3} - e^{2}\right )} + e^{3} + e^{2}\right )} \log \left (5 \, x\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x + 4 \, e^{\left (e^{3} + e^{2}\right )}\right )} \log \left (5 \, x\right ) - 4 \, e^{\left (e^{3} + e^{2}\right )}\right )} e^{\left (-\frac {1}{4} \, x e^{\left (-e^{3} - e^{2}\right )} - e^{3} - e^{2}\right )}}{4 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 23, normalized size = 0.82
method | result | size |
norman | \(\frac {{\mathrm e}^{-\frac {x \,{\mathrm e}^{-{\mathrm e}^{3}-{\mathrm e}^{2}}}{4}} \ln \left (5 x \right )}{x}\) | \(23\) |
risch | \(\frac {{\mathrm e}^{-\frac {x \,{\mathrm e}^{-{\mathrm e}^{3}-{\mathrm e}^{2}}}{4}} \ln \left (5 x \right )}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{4} \, e^{\left (-e^{3} - e^{2}\right )} \Gamma \left (-1, \frac {1}{4} \, x e^{\left (-e^{3} - e^{2}\right )}\right ) + \frac {e^{\left (-\frac {1}{4} \, x e^{\left (-e^{3} - e^{2}\right )}\right )} \log \relax (x)}{x} - \frac {1}{4} \, \int \frac {{\left (4 \, {\left (\log \relax (5) + 1\right )} e^{\left (e^{3} + e^{2}\right )} + x \log \relax (5)\right )} e^{\left (-\frac {1}{4} \, x e^{\left (-e^{3} - e^{2}\right )} - e^{3} - e^{2}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{-{\mathrm {e}}^2-{\mathrm {e}}^3}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{-{\mathrm {e}}^2-{\mathrm {e}}^3}}{4}}\,\left ({\mathrm {e}}^{{\mathrm {e}}^2+{\mathrm {e}}^3}-\frac {\ln \left (5\,x\right )\,\left (x+4\,{\mathrm {e}}^{{\mathrm {e}}^2+{\mathrm {e}}^3}\right )}{4}\right )}{x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 19, normalized size = 0.68 \begin {gather*} \frac {e^{- \frac {x}{4 e^{e^{2} + e^{3}}}} \log {\left (5 x \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________